
/ 24

Implementation of the free running
format to the DAQ software

Martin Zemko

COMPASS Front-end, Trigger and DAQ Workshop

3rd March 2020

/ 24

Overview

 Description of the free running format

 Design of the trigger framework

 High level trigger implementation

 Integration with the DAQ system

 Additional tools

2

/ 24

Description of the new DAQ format

• Encapsulates all the slices in a given time periodEpoch

• Wraps all the images in a given time periodSlice

• Wraps all the groups and hits with the same sampling frequencyImage

• Contains hits coming from one Source ID (can be nested in itself)Group

• Carries information about a single hitData

• Contains extended information about associated hit Additional Data

 New data format includes a multi-layer structure of data

 Each layer has its purpose and encapsulates the lower layer (its children)

3

/ 24

Structure of the free running format

 Data are aligned in atomic packages of the 32-bit size called „Data words“

 Every data word contains a control word indicating the type of data

Type of data word Information included

Begin of Slice I Number of Images in Slice, Slice number in Epoch

Begin of Slice II Start time of Slice in Epoch

Begin of Image Start time of Image in Epoch

Begin of Group Source ID, View ID, First Hit time in Group

Data Word Frontend ID, Channel ID, Hit time

Additional data Any kind of data (29 bits)

End of Group CRC checksum, 3 x bit flag

End of Image Currently not used

End of Slice CRC checksum, 3 x bit flag

4

/ 24

Structure of the free running format

 State machine for validation of raw data streams

 Sequence of data words must follow the paths indicated below

 If any data stream has a different sequence, data are corrupted

5

/ 24

Requirements for the trigger framework

Functional requirements

 Support of various triggering
algorithms and triggering patterns
(triggering rules)

 Adjustable trigger sensitivity

 Identification of regions of interest
based on hit correlations

 Generating event candidates
(list of images that comply
with the triggering rules)

 Emulation of the hardware trigger

 Output for the CORAL (CSDigits)

Technical requirements

 Stand-alone framework – as few
dependencies as possible

 Distributed computing for high
performance

 Support for multithreading and
NUMA balancing

 Reviewed code base (changes
committed via pull requests)

6

/ 24

Interface of the trigger framework

Inputs

 RAW data files from the DAQ

 Detector response simulations

 Detector descriptions
(detectors.dat)

 Mapping files

 Triggering options

Outputs

 Event candidates
(filtered RAW files)

 CORAL files (CSDigits)

 Monitoring information for
monitoring tools

7

/ 24

Reconstruction chain

8

/ 24

Reconstruction chain

Steps that have to be taken in the reconstruction procedure:

1. Reading RAW data – convert byte stream into slices

2. Data filtering by Source ID – extract trigger information from the slices

3. Decoding and channel mapping – change the transfer mapping into the physical
mapping

4. Time alignment – find correlations between hits and justify hits in time dimension

5. Pattern recognition – convert hits into partial tracks (se)

6. Vertex reconstruction – join projections into the full particle tracks

7. Filtering – data containing event candidates are passed through

9

/ 24

Possible integration scenarios

 Scenario 1 : Common master

 Scenario 2 : Independent trigger supervisor

 Scenario 3 : Common master interfacing through the database

 Scenario 4 : Independent trigger supervisor using the database C
o

m
p

le
xi

ty

10

/ 24

Scenario 1 : Common master

 After successful readout, the Master
notifies trigger nodes about RAW
data waiting for the triggering

 Trigger Nodes directly fetch RAW
data from the Disk storage and
initiate the triggering procedure

 Notification about successful
completion is sent back to the
Master

11

/ 24

Scenario 2 : Independent trigger supervisor

 After successful readout, the Master
sends meta information
about RAW files to the Trigger
Supervisor

 Trigger Supervisor distributes this
information to Trigger Nodes

 Trigger Nodes fetch RAW data
directly from the Disk storage and
initiates the triggering process

12

/ 24

Scenario 3 :
Common master interfacing through the database

 Master saves meta information
about RAW files to the database

 Trigger Nodes regularly check the
database for new data

 Trigger Node directly pull RAW data
from the Disk storage and
immediately initiates the triggering
procedure

13

/ 24

Scenario 4 :
Independent trigger supervisor using the database

 Master saves meta information
about RAW files to the database

 Trigger Supervisor accesses the
database checking for new data and
notifies Trigger Nodes about new
data

 Data are directly transferred from
the Disk storage to Trigger Nodes

 Trigger Supervisor initiates the
triggering procedure on Trigger
Nodes

14

/ 24

Common features for all scenarios

 At first, RAW data are stored on the disk storage

 Then, they are directly transferred to the trigger nodes and „filtered“

 Filtered data are sent to the CASTOR storage

 The DIALOG interface is used for communication between Master <–> Slaves
and Supervisor <–> Nodes

 Access to the database is always direct, i.e. using the SQL client

15

/ 24

High level trigger dependencies

 Qt framework – the base framework of the DAQ

 DAQ structure file – taken from the RCCARS, must be converted into the library

 DIALOG – library providing communication with the DAQ

 ROOT – may be needed for advanced calculations in some modules

16

/ 24

Modules of the trigger framework

 HLT Node process – main triggering software running on Trigger Nodes

 HLT Supervisor process – manages Trigger Nodes and distributes the load

 Data Generator – tool producing artificial data in the new format

 CLI Data Generator – command line interface to the Data Generator

 Data Browser – tool for browsing chunks of data

 CLI Data Browser – command line version of the Data Browser

 Monitoring tools – not yet defined

 Configuration tools – not yet defined

17

/ 24

Other tasks related to the new DAQ format

 Design and implementation of trigger configuration tools

 Design and implementation of trigger monitoring tools

 Modification of the Slave Readout process (work in progress)

 Modification of user interfaces, e.g. GUI, Logbook, etc.

 Adaptation of monitoring tools, e.g. COOOL, MurphyTV, etc.

 New database design

 Installation of new hardware

18

/ 24

Data generator

 Data Generator is already implemented and partially operational

 Utilizes a straight pipelined structure (see picture below)

 The only missing part is the Detector Response Simulation, which is also the
most important part

 It must be created in a cooperation with detector experts (hits -> signals)

 This part will be exploited also in the triggering procedure

 Inversed relation is required also for triggering (signals -> hits)

19

/ 24

Data generator GUI

20

/ 24

Data browser

 Tool for browsing RAW data files

 Supports files up to several GBs

 Provides visualization of data words

 Additional useful features can be added – structure validation, statistics,
histograms, etc.

21

/ 24

Data browser

22

/ 24

Summary

 Common goal is to implement the free running format and the high-level
trigger system

 To accomplish such task, an advanced framework is required

 The trigger system will create a separate and independent ecosystem capable
of emulation of the hardware trigger

 Interface with the current DAQ system must be also designed and implemented

 Many support tools (that are currently in use) must be modified as well

 Any available help would be highly appreciated

 It is a challenging task, but we are on our way

23

/ 24

Thank you for your
attention

