Implementation of the free running format to the DAQ software

Martin Zemko

COMPASS Front-end, Trigger and DAQ Workshop

3rd March 2020

CZECH TECHNICAL UNIVERSITY IN PRAGUE

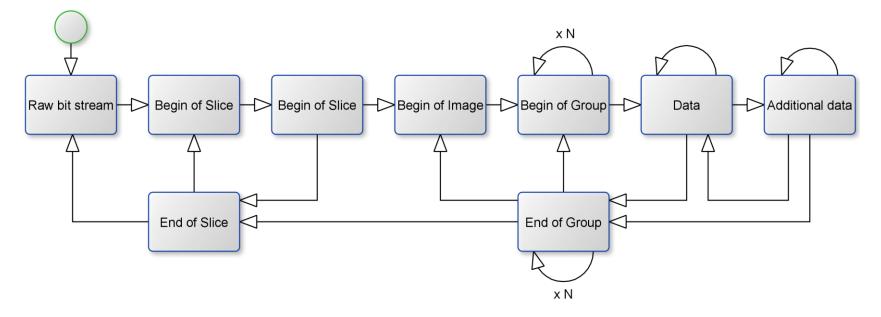
Overview

- Description of the free running format
- Design of the trigger framework
- High level trigger implementation
- Integration with the DAQ system
- Additional tools

Description of the new DAQ format

- New data format includes a multi-layer structure of data
- Each layer has its purpose and encapsulates the lower layer (its children)

• Encapsulates all the slices in a given time period						
Slice	• Wraps all the images in a given time period					
Image	• Wraps all the groups and hits with the same sampling frequency					
Group	• Contains hits coming from one Source ID (can be nested in itself)					
Data	Carries information about a single hit					
Additional Data	Contains extended information about associated hit					


Structure of the free running format

- Data are aligned in atomic packages of the 32-bit size called "Data words"
- Every data word contains a control word indicating the type of data

Type of data word	Information included									
Begin of Slice I	Number of Images in Slice, Slice number in Epoch									
Begin of Slice II	Start time of Slice in Epoch									
Begin of Image	Start time of Image in Epoch									
Begin of Group	Source ID, View ID, First Hit time in Group									
Data Word	Frontend ID, Channel ID, Hit time									
Additional data	Any kind of data (29 bits)									
End of Group	CRC checksum, 3 x bit flag									
End of Image	Currently not used									
End of Slice	CRC checksum, 3 x bit flag									

Structure of the free running format

- State machine for validation of raw data streams
- Sequence of data words must follow the paths indicated below
- If any data stream has a different sequence, data are corrupted

Requirements for the trigger framework

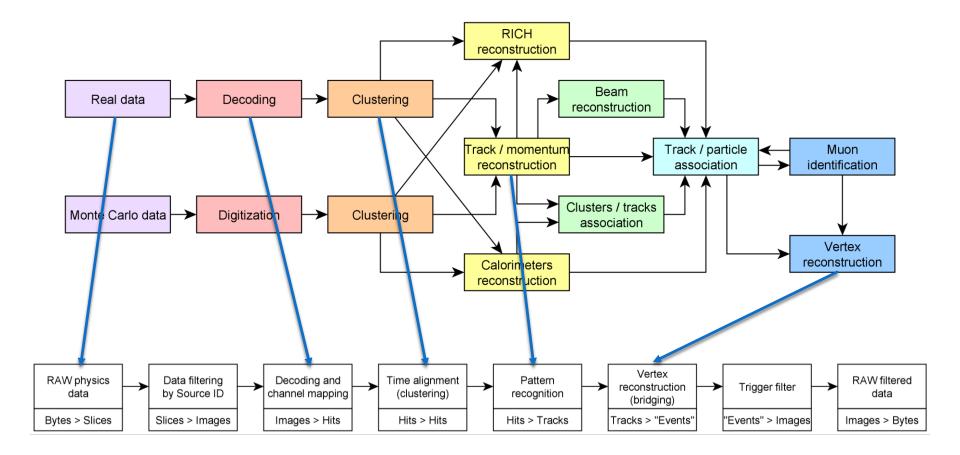
Functional requirements

- Support of various triggering algorithms and triggering patterns (triggering rules)
- Adjustable trigger sensitivity
- Identification of regions of interest based on hit correlations
- Generating event candidates (list of images that comply with the triggering rules)
- Emulation of the hardware trigger
- Output for the CORAL (CSDigits)

Technical requirements

- Stand-alone framework as few dependencies as possible
- Distributed computing for high performance
- Support for multithreading and NUMA balancing
- Reviewed code base (changes committed via pull requests)

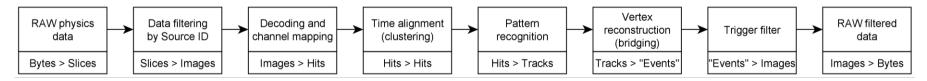
Interface of the trigger framework


Inputs

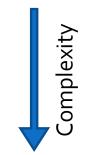
- RAW data files from the DAQ
- Detector response simulations
- Detector descriptions (detectors.dat)
- Mapping files
- Triggering options

Outputs

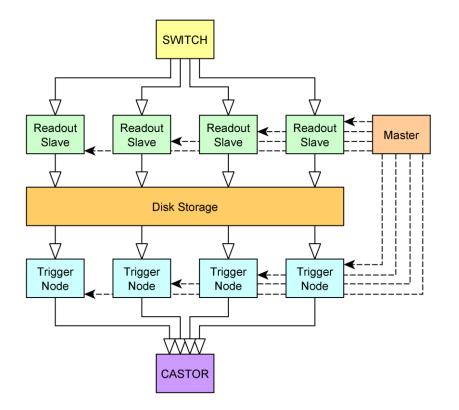
- Event candidates (filtered RAW files)
- CORAL files (CSDigits)
- Monitoring information for monitoring tools


Reconstruction chain

Reconstruction chain

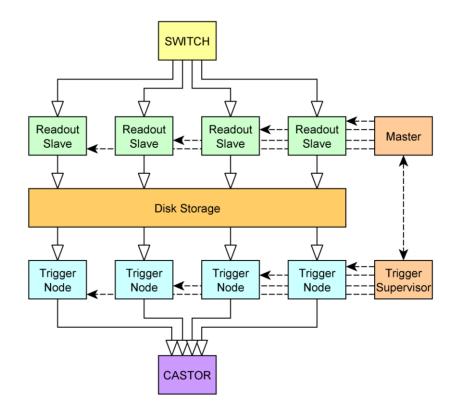

Steps that have to be taken in the reconstruction procedure:

- 1. Reading RAW data convert byte stream into slices
- 2. Data filtering by Source ID extract trigger information from the slices
- 3. Decoding and channel mapping change the transfer mapping into the physical mapping
- 4. Time alignment find correlations between hits and justify hits in time dimension
- 5. Pattern recognition convert hits into partial tracks (se)
- 6. Vertex reconstruction join projections into the full particle tracks
- 7. Filtering data containing event candidates are passed through

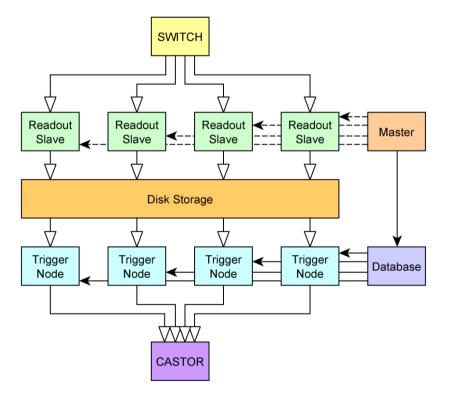


Possible integration scenarios

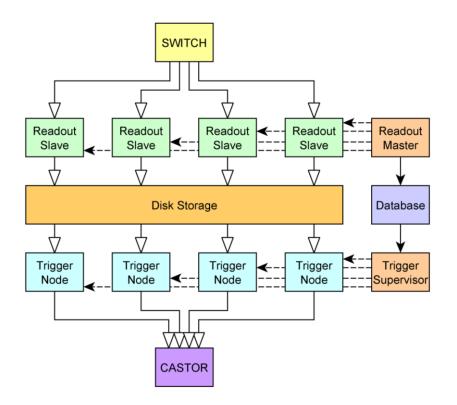
- Scenario 1 : Common master
- Scenario 2 : Independent trigger supervisor
- Scenario 3 : Common master interfacing through the database
- Scenario 4 : Independent trigger supervisor using the database



Scenario 1 : Common master


- After successful readout, the Master notifies trigger nodes about RAW data waiting for the triggering
- Trigger Nodes directly fetch RAW data from the Disk storage and initiate the triggering procedure
- Notification about successful completion is sent back to the Master

Scenario 2 : Independent trigger supervisor


- After successful readout, the Master sends meta information about RAW files to the Trigger Supervisor
- Trigger Supervisor distributes this information to Trigger Nodes
- Trigger Nodes fetch RAW data directly from the Disk storage and initiates the triggering process

Scenario 3 : Common master interfacing through the database

- Master saves meta information about RAW files to the database
- Trigger Nodes regularly check the database for new data
- Trigger Node directly pull RAW data from the Disk storage and immediately initiates the triggering procedure

Scenario 4 : Independent trigger supervisor using the database

- Master saves meta information about RAW files to the database
- Trigger Supervisor accesses the database checking for new data and notifies Trigger Nodes about new data
- Data are directly transferred from the Disk storage to Trigger Nodes
- Trigger Supervisor initiates the triggering procedure on Trigger Nodes

Common features for all scenarios

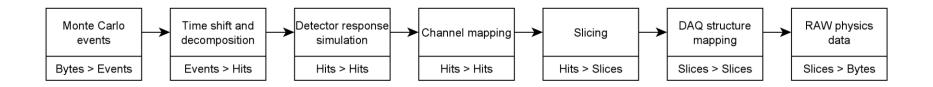
- At first, RAW data are stored on the disk storage
- Then, they are directly transferred to the trigger nodes and "filtered"
- Filtered data are sent to the CASTOR storage
- The DIALOG interface is used for communication between Master <-> Slaves and Supervisor <-> Nodes
- Access to the database is always direct, i.e. using the SQL client

High level trigger dependencies

- Qt framework the base framework of the DAQ
- DAQ structure file taken from the RCCARS, must be converted into the library
- DIALOG library providing communication with the DAQ
- ROOT may be needed for advanced calculations in some modules

Modules of the trigger framework

- HLT Node process
- HLT Supervisor process
- Data Generator
- CLI Data Generator
- Data Browser
- CLI Data Browser
- Monitoring tools
- Configuration tools


- main triggering software running on Trigger Nodes
- manages Trigger Nodes and distributes the load
- tool producing artificial data in the new format
- command line interface to the Data Generator
- tool for browsing chunks of data
- command line version of the Data Browser
- not yet defined
- not yet defined

Other tasks related to the new DAQ format

- Design and implementation of trigger configuration tools
- Design and implementation of trigger monitoring tools
- Modification of the Slave Readout process (work in progress)
- Modification of user interfaces, e.g. GUI, Logbook, etc.
- Adaptation of monitoring tools, e.g. COOOL, MurphyTV, etc.
- New database design
- Installation of new hardware

Data generator

- Data Generator is already implemented and partially operational
- Utilizes a straight pipelined structure (see picture below)
- The only missing part is the Detector Response Simulation, which is also the most important part
- It must be created in a cooperation with detector experts (hits -> signals)
- This part will be exploited also in the triggering procedure
- Inversed relation is required also for triggering (signals -> hits)

Data generator GUI

RAW file generator			×
General properties			
Configuration file	Vonline/RCCARS/compass-rccars-daq/rccars-configuration.xml	Srowse	
Output file	/online/RCCARS/compass-rccars-daq/compass-rccars-daq-rawfile-generator/resc	Srowse	
Data format	Slices •		
Slice properties			
Slice duration	100000 🌲 ns		
Image duration	10000 🗘 ns		
Sample size	10000 🗘 events		
Flux value	10 ^ 6 🔷 hits per second		
Mapping file	/online/detector/maps/2018.xml	Srowse	
Detector file	/online/RCCARS/compass-rccars-daq/compass-rccars-daq-rawfile-generator/resc	Srowse	
Sample event file	/online/RCCARS/compass-rccars-daq/compass-rccars-daq-rawfile-generator/resc	Srowse	
			_
	i Start		
Coad o	lefault values		

Data browser

- Tool for browsing RAW data files
- Supports files up to several GBs
- Provides visualization of data words
- Additional useful features can be added structure validation, statistics, histograms, etc.

Data browser

Data Browser : /onli								erateu	_uata.rav]
Open file 🚺	First slice	< Previou	us slic	e 🔶 Next slice	Hast slice	Jump	o slice				€Ju	imp				S	lice 83	844 ou	ut of 1	0003				1	Relo	ad file	Clo:	se file	Exi	t brov
		# Images		1 2 3	4 5			9	9 10	11	1	.2 13	1	4 15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	9 3	0 31	32
Slices 1 1000		99983	1	BOS I (0)	Number of in	ages: 1	LO						Slie	ce num	ber: 834	13														
 Slices 1 10 Slices 1001 . 		9983 10000	2	BOS II (0)	Start time of	slice: 3	3372000)																						
 Slices 2001 		10000	3	BOI (2)	Time of imag	e: 3337	2000																							
 Slices 3001 		10000		BOG (4)	Source ID: 67								Vie	ew ID: 0				First	t Hit Tir	ne: 594	6									
 Slices 4001 Slices 5001 		10000 10000	5	DATA (6)	Frontend ID:	8					Ch	nannel ID	D: 3					Rela	ative Hi	t Time:	5946									
 Slices 5001 Slices 6001 		10000	6	ADATA (7)	Additional da	ta: 0x0					_																			
Slices 7001		10000	7	EOG (0x5)	CRC: 0x2413	51c																						F1	0 F2:	0 F3:
 Slices 8001 		10000	8	BOG (4)	Source ID: 68								Vie	ew ID: 0				First	t Hit Tir	ne: 195	8									
 Slices 80 Slices 81 		1000 1000	-	DATA (6)	Frontend ID:						Ch	nannel ID						_	ative Hi											
 Slices 82 			-	ADATA (7)	Additional da	-					2011							1.1.2.10												
 Slices 83 	018400	1000		DATA (6)	Frontend ID:						Ch	nannel IC). 29					Rela	ative Hi	t Time:	7014									
	8301 8 8311 8	100 100		ADATA (7)	Additional da						Cit	idiniter ite						ricit	active rin	c mine.	7014									
	8311 8 8321 8			DATA (6)	Frontend ID:						Ch	nannel ID	<u>). 0</u>					Pola	ative Hi	t Timo:	0005									
	8331 8	100		ADATA (7)	Additional da						- Ch	annen	J. 9					Reiz	auveni	c mie.	8085									
	8341 8	100			Frontend ID:						Ch	nannel IC	2. 20					Dela	ative Hi	t Time er	11010									
	ice 8341 ice 8342	10		DATA (6) ADATA (7)	Additional da						Ch	iannei iL): 29					Rela	ative Hi	t time:	1181:	>								
	ice 8343	10																											0 50	0 50
	ice 8344	10		EOG (0x5)	CRC: 0x1636								1.0								-							11	0 F2:	0 F3:
	ice 8345 ice 8346	10		BOG (4)	Source ID: 71						-	1.00		ew ID: 0				_	t Hit Tir											
	ice 8346 ice 8347	10 10		DATA (6)	Frontend ID:						Ch	nannel IC): 18					Rela	ative Hi	t Time:	4387									
	ice 8348	10		ADATA (7)	Additional da																									
	ice 8349			EOG (0x5)	CRC: 0x3390																							F1	0 F2:	0 F3:
	ice 8350 8351 8			BOG (4)	Source ID: 72									ew ID: 0				First	t Hit Tir	ne: 147	85									
	6 8361 8			DATA (6)	Frontend ID:	8					Ch	nannel ID	D: 3					Rela	ative Hi	t Time:	14785	5								
Slices	8371 8	100		ADATA (7)	Additional da	ta: 0x0																								
	8381 8	100		EOG (0x5)	CRC: 0x2d40	сс																						F1	0 F2:	0 F3
 Slices Slices 84 	8391 8	100 1000	26	BOI (2)	Time of imag	e: 3337	2400																							
	018600	1000	27	BOG (4)	Source ID: 68								Vie	ew ID: 0				First	t Hit Tir	ne: 674	4									
Slices 86			28	DATA (6)	Frontend ID:	8					Ch	nannel ID	D: 7					Rela	ative Hi	t Time:	6744									
 Slices 87 Slices 88 		1000 1000	29	ADATA (7)	Additional da	ta: 0x0																								
 Slices 89 		1000	30	DATA (6)	Frontend ID:	8					Ch	nannel ID): 23					Rela	ative Hi	t Time:	6886									
 Slices 9001 				ADATA (7)	Additional da	ta: 0x0												-												
Slices 10001 :	10003	27		DATA (6)	Frontend ID:						Ch	nannel ID	0: 9					Rela	ative Hi	t Time:	8560									
				ADATA (7)	Additional da	ta: 0x0																								
				DATA (6)	Frontend ID:						Ch	nannel IC): 29					Rela	ative Hi	t Time:	8593									
				ADATA (7)	Additional da						0.0																			
				DATA (6)	Frontend ID:						Ch	nannel ID) 13					Rela	ative Hi	t Time:	11225	5								
					Additional da						CI	annerit	. 13					Rela	acive Al	c mie.	11223	,			_					

Summary

- Common goal is to implement the free running format and the high-level trigger system
- To accomplish such task, an advanced framework is required
- The trigger system will create a separate and independent ecosystem capable of emulation of the hardware trigger
- Interface with the current DAQ system must be also designed and implemented
- Many support tools (that are currently in use) must be modified as well
- Any available help would be highly appreciated
- It is a challenging task, but we are on our way

Thank you for your attention