SiGe BiCMOS electronics for ultrafast particle detection

Lorenzo Paolozzi

ACES Workshop 2020

Summary

1. SiGe HBTs for fast, low power timing measurement.

2. SiGe BiCMOS technologies.

3. Applications in HEP.

4. Radiation hardness.

Precise timing measurement in HEP

Particle identification

Pile-up suppression

Electronic contribution to the time resolution

$$\sigma_t = \frac{\sigma_V}{dV/dt} \cong \frac{ENC}{I_{Ind}}$$

 σ_t (compensation technique) $\sigma_t \propto ENC$

Equivalent Noise Charge: device comparison

$$ENC^{2} = A_{1} \frac{a_{W}}{\tau_{M}} (C_{det} + C_{in})^{2} + A_{2} \frac{ln2}{\pi} c (C_{det} + C_{in})^{2} + A_{3} (b_{1} + b_{2}) \tau_{M}$$
$$\tau_{M} \sim 1 \, ns$$

How do MOS-FET and BJT compare in terms of noise?

Equivalent Noise Charge: device comparison

h: CMOS excess noise, limits the improvement in performance when technology scales down.

Equivalent Noise Charge: device comparison

Goal: maximize the current gain β at high frequencies while keeping a low base resistance R_b

Equivalent Noise Charge

For a NPN BJT, the amplifier current gain β can be expressed as:

$$\boldsymbol{\beta} = \frac{i_C}{i_B} = \frac{\tau_p}{\tau_t}$$

 \mathcal{T}_p = hole recombination time in Base

 \mathcal{T}_t = electron transit time (Emitter to Collector)

Large $\beta \Rightarrow$ Minimize the electron transit time

SiGe HBT technology for low-noise, fast amplifiers

In SiGe Heterojunction Bipolar Transistors (HBT) the **grading** of the bandgap in the Base changes the **charge-transport mechanism** in the Base from **diffusion** to **drift**:

Grading of germanium in the base:

field-assisted charge transport in the Base, equivalent to introducing an electric field in the Base

 \Rightarrow short e⁻ transit time in Base \Rightarrow very high β

 \Rightarrow smaller size \Rightarrow reduction of R_b and very high f_t

Hundreds of GHz

Current gain and power consumption: f_t is the key

	$f_t = 10 \; GHz$	$f_t = 100 \; GHz$
eta_{max} at 200 MHz	50	500
eta_{max} at 1 GHz	10	100
β_{max} at 5 GHz	2	20

Trade-off: **ENC**

Power Consumption

 $f_t > 100 \; GHz$ technologies are necessary for fast, low-power amplification.

SiGe HBT vs CMOS for a fast amplifier

Intrinsic amplifier jitter: an example common emitter (source) configuration in a 130nm technology.

NOTE: An extra parasitic capacitance was accounted for the insulation of the HBT from substrate.

Summary

1. SiGe HBTs for fast, low power timing measurement.

2. SiGe BiCMOS technologies.

- 3. Applications in HEP.
- 4. Radiation hardness.

SiGe BiCMOS: A commercial VLSI foundry process

SiGe BiCMOS Markets Served

Optical fiber networks Smartphones

IoT Devices

Microwave Communication

Automotive: LiDAR, Radar and Ethernet HDD preamplifiers, line drivers, Ultra-high speed DAC/ADCS

source: https://towerjazz.com/technology/rf-and-hpa/sige-bicmos-platform/

Some applications

Automotive radars
(27/77 GHz)
Satellite
Communications
LAN RF transceivers
(60 GHz)
Point-to-point radio (V-band, E-band)
Defense
Security
Instrumentation

A fast growing technology: f_{max} = 700 GHz transistor recently developed (DOT7 project, IHP microelectronics)

SiGe BiCMOS: A commercial VLSI foundry process

Some foundries offering SiGe BiCMOS:

- IHP Microelectronics (→ Research Inst.)
- Towerjazz
- Globafoundries
- TSMC
- STm
- AMS
- ...

Implemented as an adder module to a existing CMOS technologies.

$\bigcup_{i=1}^{n}$

Typical increase for same tech. node in cost: ~10-15 %

Some characteristics of SiGe

- Integrated in CMOS platforms □
- ⇒ SiGe-HBT AND Si-CMOS

- Vertical transport device
- Cryogenic compatible
- Inherently rad. hard

Sood radiation tolerance with standard processing

Silicon-based device operating at < 1 K

Not as dependent on lithography as CMOS

High output current drive Tolerance to parasitics

٠

A comparison with CMOS technologies

Intrinsic performance

A. Mai and M. Kaynak, SiGe-BiCMOS based technology platforms for mm-wave and radar applications. DOI: 10.1109/MIKON.2016.7492062

Robustness to parasitics

M. Schröter, U. Pfeiffer and R. Jain, Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications.

SiGe HBT scaling

	SiGe HBT		CMOS	
Figure of merit	Base	Scaling	Base	Scaling
f _T	Good	Improves	Good	Improves
f _{MAX}	Good	Improves	Good	Improves
NF _{MIN}	Good	Improves	Good	Improves
1/f noise	Good	Neutral	Neutral	Worsens
g _M /g₀	Good	Improves	Poor	Worsens
g _M	Good	Improves	Poor	Improves
mismatch	Good	Neutral	Poor	Worsens
linearity	Good	Neutral	Good	Worsens
voltage headroom	Neutral	Neutral	Poor	Worsens
breakdown voltage	Good	Neutral	Poor	Worsens

From: J.D. Cressler, IEEE transactions on nuclear science, vol. 60, n. 3 (2013)

SG13G2 technology from IHP Microelectronics

Exploit the properties of state-of-the-art SiGe Bi-CMOS transistors to produce an ultra-fast, low-noise, low-power consumption amplifier

Summary

1. SiGe HBTs for fast, low power timing measurement.

2. SiGe BiCMOS technologies.

3. Applications in HEP.

4. Radiation hardness.

The use of SiGe BiCMOS technologies in HEP

Upgrade of the ATLAS RPCs

Discriminator parameters		
Technology	Si-Ge BiCMOS 130 nm	
Voltage supply	1-2.5 Volt	
Minimum Threhsold	$0.3 \ \mu V$	
Minimum input pulse width for threshold linearity	$0.5 \mathrm{ns}$	
BandWidth	10-100MHz	
Power consumption	$10 \mathrm{mW/ch}$	
Output Rise time $\delta(t)$ input	$300 \mathrm{\ ps}$	
Input impedance	100 Ω	
Double pulse separation	1 ns	
Radiation hardness	$10 \text{ kGy}, 10^{13} n \ cm^{-2}$	

INFN Roma Tor Vergata

Upgrade of CMS RPCs and SiPm readout

PETIROC2 – 350nm SiGe BiCMOS		
Number of channels	32	
Sensitivity	Trigger on first photo-electron	
Timing resolution [ps]	< 40	
Dynamic range	3000 ph.e (10 ⁶ SiPm gain), INL: 1% up to 2500 ph.e	
Power consumption	Power supply: 3.3 V 192 mW Analogue core (excluding outing buffer), 6 mW/ch	

Some specs from manufacturer

Silicon based TOF-PET

University of Geneva, University of Bern, HUG

Timing pixel sensor for FASER upgrade

University of Geneva, CERN

Monolithic silicon pixel sensors in SiGe BiCMOS technology

2020

For generic timing sensor R&D

2018

Demonstrator chip for a TOF-PET project

Matrix of 3×10 n-on-p pixels, of $470 \times 470 \ \mu m^2$ (C_{tot} = 750 fF) spaced by 30 μm .

- SiGe HBT preamplifier
- CMOS-based open-loop tri-stage **discriminator** (adjustable threshold with an 8-bit DAC), that preserves the **TOA** and the **TOT** of the pixel
- Discriminator output sent to fast-OR chain
- **50ps binning TDC**, R/O logic, serializer

Test beam results: time resolution

Excellent result for a silicon pixel detector without internal gain, obtained on a large capacitance (750 fF) and power consumption of 150 mW/cm².

L. Paolozzi *et al.*, 2019 JINST **14** P02009, <u>https://doi.org/10.1088/1748-0221/14/02/P02009</u> P. Valerio *et al.*, 2019 JINST **14** P07013, <u>https://doi.org/10.1088/1748-0221/14/07/P07013</u>

The "hexagonal" prototype sensor

Developed in IHP SG13G2 technology (130nm).

Matrices with hexagons of two sizes:

- hexagon side 130µm and 65µm, with 10µm inter-pixel spacing
- C_{TOT} = 220 and 70 fF

Exploits:

- New dedicated custom components developed together with foundry
- New guard-ring structure

The "hexagonal" prototype sensor

Standard substrate resistivity $\rho = 50 \ \Omega \text{cm} \Rightarrow \text{Depletion depth}$: 26µm at HV = 140 V

Thinning to 60 μ m <u>No</u> backside metallization \Rightarrow **not fully depleted** <u>PRO: much easier production</u>, but

→ slightly degraded performance because of regions where drift velocity is not saturated

Time resolution vs bias voltage

Performance limited by time walk

Summary

1. SiGe HBTs for fast, low power timing measurement.

2. SiGe BiCMOS technologies.

3. Applications in HEP.

4. Radiation hardness.

Radiation hardness of standard commercial HBTs

S. Díez et al, IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, 2010, pp. 587-593, doi: 10.1109/NSSMIC.2010.5873828.

From: J.D. Cressler, IEEE transactions on nuclear science, vol. 60, n. 3 (2013)

No studies available on AC characteristics and noise above 10¹⁴ p/cm²

CONCLUSIONS

- SiGe BiCMOS is a **cost effective** solution for fast signal amplification in particle detectors.
- Available from most **commercial manufacturers**, fast growing technology.

- Integration in monolithic pixel sensors can deliver excellent time resolution at low-power consumption.
- Inherently radiation hard, but studies at high proton fluence focusing on high-frequency response are not available.

Extra Material

Time walk correction

Improved time walk correction

Charge resolution (Cadence spectre simulation)

ATTRACT prototype: towards ps time resolution

