

ATLAS ITK PIXEL DETECTOR FOR HL-LHC

ACES 2020, CERN, MAY 26 - 28, 2020

FABIAN HÜGGING, UNIVERSITY OF BONN ON BEHALF OF THE ATLAS ITK COLLABORATION

- Introduction
 - HL-LHC challenges
 - Layout of the ATLAS ITk Pixel Detector
- The ATLAS ITk Pixel Detector for HL-LHC
 - System Design
 - Powering scheme
 - Data transmission
 - Readout and trigger concepts
 - Pixel readout chip: RD53A & ITkPixV1 (RD53B)
 - Pixel sensors
 - 3D sensors
 - Planar sensors
 - Pixel Modules
- Conclusions

HL-LHC SCHEDULE

The LHC will be upgraded to the High Luminosity-LHC (HL-LHC) to produce up to 4000 fb⁻¹ of integrated luminosity until 2035 and beyond

- benefits precision measurements in many physics channels
- allows studies of rare processes

UNIVERSITÄT BONN

INCREASING LHC LUMINOSITY: WHAT ARE THE CHALLENGES?

- HL-LHC luminosity ~7x10³⁴cm⁻²
 - About x3.5 times Run-2 peak luminosity
- − Increased luminosity \rightarrow Increased pile-up:
 - Up to 200 pile-up events expected at the HL-LHC compared to ~34 in Run-II data
 - Increased pile-up compromises pattern recognition
 - Increased readout rates → increased trigger rates and latency requires multi-gigabit data transmission and large on-chip buffering
- Increased luminosity → Increased radiation damage:
 - Damage scales approximately linearly with luminosity ~x10 increase

UNIVERSITÄT BONN

The current inner detector system will be replaced with a new all-silicon tracking system \rightarrow ITk

ATLAS INNER TRACKER (ITK)

Coverage up to $|\eta| < 4$ with ≥ 13 hits / track (barrel) & ≥ 9 hits / track (forward)

Requirements for ITk pixel detector:

- Same or better performance than current Inner Detector:
 - Track reconstruction efficiency > 99% for muons & > 85% for electrons and pions
 - Increased granularity to maintain fake rate $< 10^{-5}$, occupancy < 1% and robustness against loss of 15% of channels
- Low mass mechanics, cooling and serial power to minimize material:
 - Material budget ~ 1.5-2.0% X/X₀ per layer
- Fast readout with trigger rate 1-4 MHz and output bandwidth up to 5.12 Gb/s per front-end chip
- Increased radiation hardness up to $2 \times 10^{16} n_{eq} \text{ cm}^{-2} \& 10 \text{ MGy}$ (TID)

[mm]

400

200

3500

n = 3.0

n = 4.0

Phase-II Inner Tracker (ITk)

1500

ITK PIXEL DETECTOR LAYOUT

Outer Barrel:

3 layers of flat staves and inclined rings n-in-p planar quad modules 4472 quad modules, 7.2m² 2.3x10¹⁵n_{eg}cm⁻² & 1.7MGy @4000fb⁻¹ Forward pixels: 3 layers of rings n-in-p planar quad modules 2344 quad modules, 3.75m² 3.1x10¹⁵n_{eq}cm⁻² & 3.5MGy @4000fb⁻¹

Layout and performance described in ATL-PHYS-PUB-2019-014

Current pixel system: ~92M pixels ~2000 modules ~1.9m² active area

ITk Pixel System:

~1.4G pixels ~9400 modules ~13m² active area

Inner System *Replaceable:* 2 layers of flat staves and rings L0: 3D single modules, 1188 modules in 396 triplets, 0.5m² L1: n-in-p planar quad modules, 1160 modules, 2.0m² 350 1.2x10¹⁶n_{eq}cm⁻² & 9.5MGy @2000fb⁻¹ (layer-0 r=33/34mm)

SYSTEM DESIGN: POWERING SCHEME

- Serial powering of pixel modules with up 12 (16) modules per chain
- DCS functionality integrated in concept
 - DCS chip: monitor and control of module (bypassing)
 - Independent power and communication lines for the DCS

See M. Hamer's talk tomorrow for more details

kapton/copper flexes \rightarrow PP0 \rightarrow TwinAx cables \rightarrow Gigabit receiver chip (GBCR) \rightarrow IpGBT (low-power Gigabit transceiver and VTRx+) for aggregation and electro-optical conversion

- Readout from FE-chip at 1.28 Gbps with up to 4 links per chip depending on position in pixel system
- Uplink sharing on module used on all layers to reduce material
- Sharing of downlinks under discussion: forwarding of CMD between modules
- Custom low-mass 34 AWG twinax cable for transmission from detector to optoboxes, up to 6m
- Losses to be kept below 20 dB from FE-chip to GBCR including connectors, flexes and cable
- Signal recovered at optobox by GBCR
- Aggregation of electrical signals and electro-to-optical conversion by IpGBTx and VTRx
- Optical fibres to readout PCs with FELIX boards

DATA TRANSMISSION

- Candidate twinax cable identified
 - Termination being developed
- GBCR v2 submitted end of 11/2019, optimised for 1.28Gbps
 - Include CMD pre-emphasis
- Improved jitter in RD53B/ITkPixV1
 - Data transmission tests with RD53 CDR test chip
- Developing System tests with all elements

- Eye diagram over full chain:
 - RD53 CDR + Flex + TwinAx + GBCR with pre-emphasis
 - Jitter: ~50 ps, Eye opening: 250 mV

UNIVERSITÄT BONN SYSTEM DESIGN: READOUT & TRIGGER

- Complete ITk readout on L0 with 1 MHz rate and 10 µs latency <u>or</u>
- Partial ITk readout on L0 with 4 MHz/10 μs and full readout at L1 with 600 or 800 kHz/35 μs
 - outer pixel layers can provide full data on L0
 - inner layers can't due to bandwidth limitation of 5 Gb/s
 - \rightarrow fast clear on L0, wait for L1

- Electrical readout until optoboards requires many services inside the detector volume and drives the material budget
 - new material budget and introduction of safety factor significantly increased data rates
 - estimates for link occupancy limits significantly decreased for hardware track trigger (HTT) requested regions
- It seems impossible to fit more services into the available services gaps
 - risk for baseline trigger scenario seems acceptable
 - standard evolved trigger scenario seems ruled out

\rightarrow Explore evolved trigger scenario with regional readout in Pixel FE

- Some handles to recover rate capabilities
 - higher thresholds
 - ToT suppression
 - latency budget (fine-tuning on TDAQ side)

PIXEL READOUT CHIP

- Format & power similar to FE-I4
- CMOS node and vendor: 65 nm TSMC
- Joint development ATLAS & CMS
 - RD53 share resources
 - Several prototypes fabricated and tested
- Radiation tolerance challenge \rightarrow talk M. Menouni yesterday
 - Damage mechanism empirically characterized
 - Produce design spec for 500 MRad (1 GRad) target
- **Pixel layout**
 - 50x50 µm² with 4-pixel analogue section in 3 flavours for RD53A
 - Surrounded by synthesized digital sea, organised in 8x8 Pixel Cores
 - 50 µm minimum pitch to allow "standard" flip-chip
- Timescale
 - Aug. 31, 2017: RD53A Submission
 - Dec. 6, 2017: First chip test
 - Apr. 13, 2018: First bump-bonded chip test
 - Mar. 17, 2020: ITkPixV1 Submission

FF

35

PIXEL READOUT CHIP SPECIFICATIONS

Technology	65nm CMOS
Pixel size	50x50 um ²
Pixels	394x400 = 157600
Detector capacitance	< 100fF (200fF for edge pixels)
Detector leakage	< 10nA (20nA for edge pixels)
Detection threshold	<600e-
In -time threshold	<1200e-
Noise hits	< 10 ⁻⁶
Hit rate	< 3GHz/cm ² (75 kHz avg. pixel hit rate)
Trigger rate	1 or 4 MHz
Digital buffer	12.5 us
Hit loss at max hit rate (in-pixel pile-up)	≤1%
Charge resolution	≥ 4 bits ToT (Time over Threshold)
Readout data rate	1-4 links @ 1.28Gbits/s = max 5.12 Gbits/s
Radiation tolerance	500Mrad at -15°C
SEU affecting whole chip	< 0.05 /hr/chip at 1.5GHz/cm ² particle flux
Power consumption at max hit/trigger rate	0.7 W/cm ² including SLDO losses
Pixel analog/digital current	4uA/4uA
Temperature range	-40°C ÷ 40°C

PIXEL READOUT CHIP: DIFFERENTIAL ANALOG FE

- ATLAS choose the differential FE for ITkPixV1
 - Continuous reset integrator first stage with DC-coupled pre-comparator stage
 - Two-stage open loop, fully differential input comparator
 - Leakage current compensation a la FEI4
 - Threshold adjusting with global 8bit DAC and two per pixel 4bit DACs
- Combines excellent noise occupancy performance and low power

PIXEL READOUT CHIP: DIGITAL ARCHITECTURE & I/O

CMD Protocol:

- 16-bit frame based format
 - Custom DC balance encoding
- Enables trickle configuration (writing config during data taking)
 - Important to SEE mitigation strategy
- Two trigger schemes
 - Single level (L0) or Two Level (L0/L1) with L0 = save, L1 = read
- Trigger tagging
 - Self correcting scheme in case of BC counter upset

Output Protocol:

- Aurora protocol (64b/66b encoding)
- Streams to carry multiple events (max number programmable)
- Highly compressed event format within stream
 - Varying length
 - Binary tree encoded hit maps
- Overall achieved around 25% data compression compared to RD53A
- Comes at cost of complexity in DAQ

PIXEL READOUT CHIP: LIST OF CHANGES AND NEW FEATURES

1600

f it managementance

a 0.01 + 2.01 m

- 6.70 × 0.01 ps

44.

Eve discram (258012 waveforms)

Rep freet

Time interval error histogram

Time inc.

Eye diagram and TIE histogram of 1.28 GB/s

PRSB15 pattern with 160 MB/s input

300

 $J_{rms} = 6.7 \text{ ps}$

 $_{pp} = 57 \, ps$

330

3326

2103

T 200

1500

100

- Improved CDR/PLL design:
 - After X-ray irradiation to 600 Mrad(-14 °C) circuit is fully functional, peak-peak jitter increased by only 13%
 - Better SEE susceptibility
- Improved ShuntLDO design:
 - New bandgap scheme and start-up
 - Overload/undershunt and overvoltage protection
 - Low/High power mode configuration and V_{ofs} averaging option
- Hit processing and latency buffering in pixel/regions/cores
- Triggering and data flow:
 - Support for 1 or 2 level trigger schemes
 - Extended data buffering and handling of buffer overflows
 - Optional removal of isolated hits and limiting of number of hits per core column
- Additional readout features:
 - Binary tree hit encoding and optional ToT information discarding
 - Programmable use of Aurora streams and flexible data merging on multi-chip modules
- Calibration and test features
 - Configurable Auto-trigger and High precision ToT
 - DFT scan path for effective production testing
- SEU and SET protection

ATLAS ITk Pixel Detector for HL-LHC - F. Hügging - ACES 2020 @ CERN

3D SENSORS

PLANAR SENSORS

- Radiation hard to 3.1x10¹⁵n_{eq}cm⁻²
- Dies of 4x4 cm2 (quads), 100μm in layer 1 and 150μm thick in layers 2,3,4
- Require:
 - Bias voltage up to 600 V (at end of life)
 - Hit efficiency > 97% (at end of life)
- Optimization ongoing for:
 - Biasing structure kept floating to reduce efficiency loss
- Market survey underway, will complete in 2020

Optimisation of biasing structures: No-bias structure and bias rail (punch-through also being used)

Test beam result for 50x50 μm² RD53A module irradiated with 70 MeV protons to 3x10¹⁵ n_{eq}cm⁻² > 98% efficiency for 600V

HV Isolation

Parylene-N used, no discharge observed on 33 irradiated modules up to 900V

Promising results after irradiation, no discharge observed 100 cycles -55 to +60 and 400 cycles to 1kV + 200 cycles to 1.1kV after 7.4 MGy Wire bond strength retained after irradiation to 5.2 MGy

- Hybridisation

- Market survey in progress
- Wire bond encapsulation
 - Protect against handling and corrosion
 - No candidate for full encapsulation identified after irradiation due to CTE mismatch and material becoming harder and more brittle

MODULES

- Partial encapsulation or low CTE material being investigated
- Module assembly
 - Using stencil method
 - Module carrier for transport and testing
- Around 200 RD53 modules in production
 - Exercise full production chain

Module Carrier

MODULES – BUMP STRESS

- Failure of bumps observed on FE-I4 modules during thermal cycling (-55, 60)
 - FEA models have been used to analyse thermal stresses in modules
 - Linear models and models with correct bump geometries have been studied
 - Models predict number of cycles to failure similar to observed with FEI4 single-chip modules
 - CTE mismatch with Cu in hybrid has biggest effect optimize Cu in hybrid
 - ITkPix modules using 25 μ m thick copper are predicted to survive 200 thermal cycles for -55 \rightarrow +60°C
 - Models predict 4000 cycles before failure for +40 → -45°C compared to spec of 400
- Thermal cycling of single-chip modules and quads
 - Initial bump quality is important
 - Reasonable agreement with FEA models
 - Parylene coating has a beneficial effect
- Considerable progress in understanding the problem and engineering a solution

Thermal cycles on single chip FEI4 modules with 48μm Cu on hybrid, with and without parylene

CONCLUSIONS

- Building a pixel detector for operation at the HL-LHC is challenging
 - Extreme rates and radiation hardness
 - Increased granularity
 - Low mass
- ITk pixel system has been designed to meet these challenges
 - Smaller pixels with new faster electronics
 - Low mass materials and modules
 - Serial powering
- The project is now moving from design to prototyping
- Many challenges remain
 - Large scale production
 - Learning about system effects
 - Dealing with effects of Covid-19 pandemic