

# The Phase 2 upgrade of CMS Inner Tracker

Stella Orfanelli

CERN

# Outline

## **CMS Inner Tracker for HL-LHC**

Requirements, Layout & Performance

## System aspects

System Architecture Development of system components System Tests

# Inner tracker Phase 2 requirements

## **Objective:**

## Maintain or improve tracking capability with 200PU

| <b>8</b> × higher pile-up       | $(25 \rightarrow 200 \text{ PU})$                                |
|---------------------------------|------------------------------------------------------------------|
| <b>8</b> × higher hit rate      | $(\rightarrow 3.2 \text{ GHz/cm}^2)$                             |
| <b>4</b> × longer latency       | (3.2 →12.8 µs)                                                   |
|                                 | $\rightarrow$ need 8 × 4 = 32 × bigger buffers                   |
| <b>7.5x</b> higher trigger rate | (100 → 750 kHz)                                                  |
|                                 | $\rightarrow$ need <b>8</b> × <b>7.5</b> = <b>60</b> × bandwidth |
| <b>10x</b> more radiation       | $(300 \rightarrow 3000 \text{ fb}^{-1})$                         |
|                                 |                                                                  |

Increased granularity (x6 smaller pixels) Increased detection coverage (|η|≤ 4) Reduced material budget (light mechanics, services) Lower detection threshold (new readout chip) Simple installation and removal



Innermost layer:  $2.3 \times 10^{16} n_{eq}/cm^2$ Outer & Service cylinder:  $10^{15} n_{eq}/cm^2$ 



Outer & Service cylinder: 100Mrad

# Tracker Phase 2 Upgrade



2 types of Outer Tracker:2S (Strip-Strip sensor modules)PS (macro-Pixel Strip sensor modules)

2 types of Inner Tracker modules:2×2 Pixel Chip modules2×1 Pixel Chip modules

# Inner Tracker Layout: Extension to $|\eta| = 4$

## Hybrid technology

Total active surface of ~4.9 m<sup>2</sup> -Optimization for production of 4k modules



5 rings/disk

**TEPX** is a large and powerful luminometer and will receive extra lumi triggers.

First ring of the last disk is fully dedicated to lumi and background monitoring, with independent readout and control.

# ¼ CMS Inner Tracker

Simple mechanics no turbines-tilted modules



# System Architecture



# Hybrid pixel modules

**High-Density Interconnect (HDI)** 

## to distribute signals and power to/from module

### Simple module:

Pixel chip is the only active component No auxiliary electronics

Passives: decoupling caps and connectors (power and readout)

### Wire bonding





## Read out electronics

RD53 chip adapted to CMS requirements  $50 \times 50 \ \mu m^2$ 



## System Architecture: Power

Electronics system is segmented in power chains. No crossing of readout or sensor bias is done among modules of different chains.



## Serial Powering across modules

Serial powering is the only viable solution for the IT system ~50 kW on-detector power ✓ Low mass- Integrated on-chip - Radiation hard - Not sensitive to voltage drops- Low noise

 $\mathbf{I}_{in}$  constant, enough lin to satisfy highest  $\mathbf{I}_{load.}$  Any extra current gets burnt by shunts.

I<sub>in</sub> provided by module: Current shared among chips.

Up to 12 pixel modules serially powered 500 Serial power chains for IT system

**Two on-chip Shunt-LDO regulators** for analog and digital supply voltages. 2A maximum input current per Shunt-LDO.

### 20% current headroom for stable operation in CMS IT





Example current consumption of one readout chip



# Serial Powering: Max 12 modules/chain

## **TBPX:**

1 chain for 2 consecutive ladders in Phi 8 or 10 modules/chain.

## **TFPX/TEPX:**

1 chain(s) per (X) side /(Z) side of a ring. 5 to 12 modules per chain



## 2 HV lines/ SP chain in the barrel, 1 HV line/ SP chain in the rings

# Power distribution implementation



## System Architecture: High Bandwidth Readout chain

## Up to 6 electrical up-links @1.28 Gb/s per module to LpGBT

Data from L1 accept, monitoring info to DAQ and control system Modularity depends on hit rate (location) Efficient data formatting to reduce data rates (factor ~2) 25% bandwidth headroom on e-link occupancy

## One electrical down-link @160 Mb/s per module from LpGBT



Clock, trigger, commands, configuration data to modules



H:high rate chip

L: low rate chip

28 DTC (Data, Trigger, Control) boards required for CMS IT

Dedicated boards & crate(s) for TEPX LUMI/BKGD measurement

# Portcard design

~750 portcards to readout/control CMS IT

### Portcard designed in 2019:

4 Kyocera 6841 elink connectors
2 Low-power Gigabit Transceiver (LpGBT)
2 Versatile Link+, each 1 x 10.24 Gbps uplink and 1 x 2.56 Gbps downlink

powered by a mezzanine with a pair of cascaded DC-DC converters (similar to OT powering scheme)







T. Nussbaum, K. Ecklund, A.Kumar Rice University

# Portcard integration

## Portcards @outer radii of TFPX Disk



*Optoelectronics limits (1E15 n/cm<sup>2</sup> fluence, 100 Mrad) impose their integration at higher radii* 



Portcards of TEPX



# **Prototypes Under Test**



RD53A Single Chip Cards (SCC)



RD53B Linear AFE MiniASIC



RD53B SLDO test chips





RD53A Quad modules



Disk-like setups



Demo Portcard



Electrical links



CMS uDTC (FC7) +FMC

# Pixel Module development

High Density Interconnect (HDI) contains only passive components (routing of signals, power, bias)

-Designed and tested three RD53A module HDI flavors: TBPX 2x2, TBPX 1x2, TEPX 2x2

-Development of assembly tools and procedures almost finished -Assembled and tested to date 25 digital modules in 3 sites and used extensively in system tests Next:

-Production of demo-modules with sensors (started)-Design of HDI for CROC-based prototypes (started)



Current density in the middle HDI layer: return line





## Next generation pixel chip: RD53 chip

# RD53A chip (~ ½ size of final chip): Developed by RD53 collaboration (ATLAS & CMS) 65 nm CMOS technology Analog islands in a digital sea 50 x 50 μm<sup>2</sup> pixels 3 Analog Front-End for low threshold operation (<1ke-)</li> 2 digital architectures Shunt-LDO for serial power 4\*1.28 Gbps output links







RD53A Chip is fully functional-RD53A meeting specifications In May 2019, **the CMS Tracker chose the Linear front-end** for the integration in the RD53B-CMS (CROC)

The RD53A version fulfils the CMS requirements with some limitations, like the <u>slow timing response</u> and the <u>Threshold</u> <u>trimming DAC (TDAC) saturation effect at cold</u>, that have been corrected and prototyped in August 2019.

18

# Towards the CROC

Core design of RD53B common for the two experiments ATLAS chip submitted on March 18 (6 months delay) featuring the ATLAS chosen AFE (Differential) and significanlty improved PLL/CDR and SLDO IPs (tested with miniASICs.)

Integration of the Linear Front-End in the 8x8 Pixel Core  $\rightarrow$  DONE Adapt the full chip floorplan, top-level netlist and assembly flow to the different array size and Front-End  $\rightarrow$  DONE Implement and verify few additional features requested to improve the chip calibration, monitoring and diagnostics  $\rightarrow$  Started

Chip verification using data imported from CMSSW ROOT Full chip assembly and sign-off verifications



**CROC floorplan** Size (including seal-ring): 21.6 mm x 18.6 mm

#### **Tuned threshold dispersion** Time-walk evaluated @ Qin=Qth 50 160 Tuned threshold dispersion [e r.m.s.] 140 45 Time-walk @ threshold [ns] 120 40 100 35 80 30 60 25 40 20 20 100 1000 1d anneal pre-rad 10 100 1000 1d anneal pre-rad TID [Mrad] TID [Mrad]

L. Gaioni, INFN Bergamo/Pavia

19 F. Loddo, INFN Bari

## Linear FE test results

CMS Front-End (Linear FE) miniASIC thoroughly qualified

All planned improvements are achieved: Improved Threshold trimming DAC and 5th bit

Improved Comparator to decrease time walk

Excellent test results vs TID

# SLDO test chips: New features for CROC

## Campaign in 2019 to evaluate new features on 3 test chips. <u>Review in Jan '20 to decide on CROC enabled features Tests combined</u> <u>with RD53A confirmed improvements</u>

✓ Improved startup behavior:
 Common bandgap regulator for Analog/Digital SLDOs

✓ Overvoltage protection (OVP):
 Voltage clamp to avoid exceeding 2V input

✓ Vofs averaging mode (configurable):
 To be decided based on system tests with CROC

## X Undershunt protection:

Reduces Vout in case of \*some\* overload cases

## **X** Low power mode:

Enabled by \*extra\* AC signal for detector integration tests



### STARTUP OFF IV scan Vref1 Voff] Vrefa Voff2 VDDA 1.25 Σ g 1.00 10.75 0.50 0.25 0.5 1.0 1.5 2.0 Input Current [A]





# RD53A digital modules Current sharing & SP operation

## Start-up VI show the known RD53A late start-up issue (fixed in RD53B) No noticeable noise increase from SP operation















# RD53A quad modules serially powered: Ring & Ladder

### Successful operation with Vdrop matching simulations.



IV curve for whole structure with 4 modules

Barrel structure power chain using module pigtails



Ring structure with Alu-flex power distribution



D. Koukola, CERN

# Elinks prototypes

AWG36 has been used to readout SCCs and modules successfully electrically and optically. Still considering AWG36 or flex for the disks.

Prototypes with 5 diff. pairs (4 up-links, 1 down-link) to readout RD53A digital modules.

**Copper + polyamide Twisted Pairs up to 1.4m:** AWG 36 or AWG 34, not shielded





**Flex Prints (straight 35cm and bifurcated 40cm):** Cu mass =1.5oz (~52.5µm thick) and Cu Back plane



Gamma irradiation at Sandia Labs in Dec 2019 with 80-110 MRad Thermal Cycle TP\_20cm and TP\_35cm up to 55° C for 4 hours

<u>All TWP passed continuity tests, measured same DC resistance</u> <u>No measured difference in eye diagrams – to be repeated to higher fluences.</u>



# Elinks + RD53A SCCs: Signal Amplitude & Pre-emphasis

TWP and flex elinks achieve eye height and jitter specs (satisfy LpGBT input) by tuning TAP settings.



Example: flat flex cable long side (CFF 005)



No pre-emphasis





N. Emriskova, CERN 22

# **Demo Portcard**

## **Prototype:**

2 elink connectors: 2up/1down, 4up/1down 1 LpGBT 1 Versatile Link+ Extra I2C connector for lpGBT configuration

### **Debugging features:**

Switches (lpGBT mode) MCX (coaxial) connectors: 1up/1down Direct powering

### Successful operation and BER tests using demo portcard

lpGBT configured through I2C (next step: optical configuration)
Slow control of lpGBT and RD53A using python scripts
RD53A can generate PRBS7 → BER tests using either lpGBT or FPGA pattern
checker

### **BER tests VS**

LpGBT Sampling point (phase) LpGBT Equalization (recovering high freq.) RD53A Pre-emphasis (boosting high freq.)

More portcards, DC-DC mezzanine available in March 2020 Ready to continue with optical configuration and realistic powering.





# Portcard test setup: SCC

## Performed tests with elinks up to 1.4m with BER<1e-11

Able to lock with moderate down-link driving strength Cross-talk tests showed promising results To be repeated with multiple modules





## Portcard test setup: TBPX/TEPX module

## BERTs on up-links reached "low" BERs (<1e-9)

HDI reflections combined with PLL issues made difficult establishing link Able to lock only with slower clock (40 MHz instead of 80 MHz) Requires high down-link signal driving strength

### **Issues -> Fixes:**

PLL in RD53A known to be unreliable  $\rightarrow$  fixed in RD53B Significant duty-cycle dist. (DCD)  $\rightarrow$  new PLL will be less sensitive to DCD Reflections due to TBPX HDI (impedance matching)  $\rightarrow$  new TBPX HDI design with better impedance for CMD link



Fix for PLL: downlink pattern = clk (instead of sync)



Fix for Z mismatch = clk 40 MHz (instead of 80 MHz)

# Summary

## System architecture choices for low mass services and high bandwidth readout

- Serial powering defines the system modularity (sensor bias and readout independent per SP chain)
- Optical components as close as possible (radiation hard limited)
- LpGBTs connected to modules with low mass elinks

## Preparing for final CMS pixel chip submission in Oct 2020

- Demonstrator RD53A chip working ATLAS submission in March 2020
- LIN miniASIC excellent results
- Significantly improved PLL/CDR and SLDO IP blocks

## First successful power and readout system tests performed with RD53A modules in 2019

- System tests with RD53A quad modules in SP chains and readout tests
- Low mass elinks and optical conversion prototype tested successfully achieving low BER
- Using DAQ developed for uDTC based on FC7 boards