ATLAS & CMS TIMING DETECTORS

JuanAn García on behalf of ATLAS HGTD and CMS MTD Collaborations Institute of High Energy Physics ACES2020 27th May 2020

Institute of High Energy Physics Chinese Academy of Sciences

HL-LHC

LHC / HL-LHC Plan

Challenging pile up conditions at the HL-LHC:

- Additional fake jets \geq
- Affects reconstruction \succ

Precise timing detectors will provide time resolution:

- Resolve dense interaction \geq environment with precision timing
- Improve track-to-vertex association

High

ATLAS PRECISION TIMING STRATEGY

ATLAS: High Granularity Timing Detector (HGTD):

- Sensor: Large Gain Avalanche Detector (LGAD)
- ~35 (start) ~70 ps timing resolution
- $\ \ \, \sim 2.5 \ x \ 10^{15} \ n_{eq}/cm^2$ radiation tolerance

CMS PRECISION TIMING STRATEGY

CMS: MIP Timing Detector (MTD)

Barrel Timing Layer (BTL)

Barrel: LYSO bars + SiPM readout

- TK / ECAL interface: $|\eta| < 1.45$
- Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Active area ~38 m²; 332k channels
- Fluence: ~ $2x10^{14} n_{eq}/cm^2$

CMS

Endcaps: Si with internal gain (LGAD)

- On the CE nose: $1.6 < |\eta| < 3.0$
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Active area ~14 m²; ~8.5M channels
- Fluence: up to $2x10^{15} n_{eq}/cm^2$

Endcap Timing Layer (ETL)

MIP sensitivity with time resolution of 30 ps at HL-LHC start and <60 ps at 3 ab-1

- Three rings layout optimised for timing performance and cost
- Module overlap has been optimised for uniformity
- Disk rotation in opposite direction (15-20) to avoid gaps and maximize the hit efficiency
- Each cooling/support disk is separated in two half circular disks
- Support unit made of carbon fibre ensures exact module position and alignment of x and y readout row

CMS MTD LAYOUT

BTL layout:

- Detector mounted on the inner surface of the Tracker Support Tube share services and schedule with tracker
- Single layer, 40 mm thick, segmented into 72 trays
- Each tray consists of 6 Readout Units with 24 modules each

ETL layout:

Double mounted on the endcap calorimeter.

Sensor modules on two sides of support disk.

- Services run across modules in service channels to periphery.
- Separate cold volume.

ATLAS and CMS timing detectors, JuanAn García, ACES2020, May 2020

LGAD sensors:

- Baseline sensor technology for ATLAS HGTD and CMS ETL.
- n-p silicon planar detector + multiplication layer that amplifies the signal
- ➢ High E field
- Moderate internal gain (10-50)
- Excellent time resolution ~30 ps before irradiation
- New doping materials, substrates and new geometries being studied.
- Prototypes tested from CNM, HPK, BNL, FBK

SENSORS

CMS BTL:

- Cerium doped Lutetium based scintillation crystals (LYSO):
 - Excellent radiation tolerance
 - Density (7.1 g/cm3), bright (40k ph/MeV)
 - Fast rise time O(100ps), decay time ~40 ns
- Silicon Photomultipliers as photosensors:
 - Compact, insensitive to magnetic fields, fast
 - Optimal SiPM cell size : 15 mµ
 - High dynamic range, rad tolerant
 - Photo Detection efficiency : 20-40%

3x3x57mm LYSO crystal bars with two 3x3mm SiPMs glued at each end

HGTD MODULE

Flexible printed circuit board:

- Bare module glued to small flex
- Routing all connections between ASIC and peripheral on-detector electronic
- Signal lines wire bonded to two ASIC
- \blacktriangleright 2 layer design with 220 µm thickness
- ALTIROC front-end ASIC:
- Radiation hardness ~2 MGy
- Target time resolution ~25 ps
- > Latency up to 35 μ s @ 1 MHz trigger
- Low power dissipation
- > 15x15 channels (pixels)
- ➢ I²C link for slow control
- PLL and phase shifter
- Time over threshold (ToT) and Time of Arrival (ToA) information
- Bunch-by-bunch luminosity data in a separate stream

5x5 LGAD sensor bumpbonded to ALTIROC1

CMS BTL AND ETL MODULES

BTL module:

- ➤ 16 LYSO bars + 2 SiPM arrays
- \succ TOFHIR front end ASICs
 - 32 channels •
 - Time-to-digital converters • ~25 ps
 - Charge-to-digital converters

ETL module:

- Bare modules laminated to an AlN substrate
- Flex lines wire bonded to the ASICs
- ETROC front-end ASIC
 - 16×16 channels (pixels)
 - 65 nm technology
 - ASIC contribution to time resolution < 40 ps

3: ETL ASIC 4: Mounting film 5: AlN carrier 6: Mounting film 7: Mounting screw 8: Front-end hybrid 9: Adhesive film 10: Readout connector 11: High voltage connector 12: LGAD bias voltage wirebond 13: ETROC wirebonds

ATLAS HGTD READOUT CHAIN

CMS MTD READOUT CHAIN

Off-detector electronics:

- DAQ node boards
- ➢ DTH board (timing)

On-detector electronics

- BTL: Concentrator card
- ➢ ETL: Hybrid boards

Peripheral electronic board:

- bpool12VDC-DC converter
- Low power GigaBit Transciver (lpGBT)
- LV and HV services
- I²C bus for slow control and module configuration
- Versatile link Plus (VTRx+):
 2.56 and 10.24 Gbps (down/up-link)
- E-link speed 320, 640 and 1280 Mbps (up-link) and and 320 Mbps (down-link)

CMS MTD ON-DETECTOR ELECTRONICS

BTL concentrator card:

- Power Control Converter (DC-DC) cards
- ➢ GBT-SCA chip for slow control
- ≻ lpGBT
- $\succ \bar{V}TRx+$

- DC-DC converter
- SCA chip for slow control
- ➢ lpGBT
- \succ VTRx+

ATLAS and CMS timing detectors, JuanAn García, ACES2020, May 2020

The FELIX (Front End LInk Exchange) board will be common to all ATLAS phase-II detectors and it will interface with most of the ATLAS systems:

- \blacktriangleright Data Handler \rightarrow Event builder
- Detector Control System (DCS): LV current, temperature,...
- Timing, trigger and control
- On-line monitoring

Based on advanced telecommunications architecture (ATCA) with centrally defined CMS specifications:

- The interface to the central Timing and Control and DAQ systems is provided by the data trigger hub (DTH400) and additional data bandwidth to the DAQ system is provided by a DAQ800 board.
- Unpacking and processing of the data received from the front-end will be accomplished by the MTD back-end (Serenity) boards positioned in node slot

Serenity board

- Static and dynamic contributions to the clock can affect the time resolution of the detector:
 - Static: time-of-flight, nonuniform clock propagation paths within an ASIC.
 - Dynamic: high-frequency jitter, noise in the flex cables, and low frequency day/night temperature changes
- On-line measurement of the average hit time per ASIC at a high trigger rate in the back-end electronics to take into account dynamic contributions.
- The hit time will be averaged during ~20 ms and later on the correction will be applied offline.

CMS MTD TIMING CALIBRATION

- The time offsets of the MTD channels can be inter-calibrated using all the tracks collected by the CMS high level trigger.
- At 1 kHz high level trigger rate, 1000-10000 tracks per channel (BTL) will be collected in around 20 or 200 s, providing the possibility of frequent and granular calibrations.
- These calibration constants can be made available for the prompt reconstruction of the events and thus applied offline.

ATLAS and CMS timing detectors, JuanAn García, ACES2020, May 2020

CONCLUSIONS

- ATLAS and CMS upgrade for HL-LHC foresees novel precision timing detectors with target 30-50 ps time resolution per track.
- Novel LGAD sensors are the baseline technology for ATLAS HGTD and CMS ETL while LYSO and SiPM is the baseline technology for CMS BTL.
- On-detector electronics will be based on common lpGBT and VTRx+ electronics for phase-II upgrade. Dedicated front-end ASICs ALTIROC (HGTD), ETROC (ETL) and TOFHIR (BTL) are under development.
- Off-detector back-end will be based on common FELIX boards for ATLAS HGTD while common (DTH and DAQ800) CMS boards and dedicated DAQ nodes will be used for MTD.
- ➤ CMS MTD Technical Design Report was recently (2019) approved.
- ATLAS HGTD Technical Design Report is currently under the approval process.

Thank you