Collider probes of real triplet scalar dark matter

Yong Du

based on arXiv: 2003.07867

email: yongdu@umass.edu

Seventh Workshop of the LHC LLP Community, May 25, 2020

In collaboration with Cheng-Wei Chiang, Giovanna Cottin, Kaori Fuyuto, Michael Ramsey-Musolf

Disclaimer: Apologize for not citing your papers here due to limited time and selected topics.

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Our focus...

What we find... the spot er

1. LHC excludes ~300GeV

2. HL-LHC could excludes up to 800GeV

3. FCC-pp could cover O(TeV)

4. DM direct direction could cover almost the entire parameter space

Yong Du

Brief model introduction

Collider phenomenologies?

Brief model introduction

$$\mathbf{\Sigma} = rac{\mathbf{1}}{\mathbf{2}} \left(egin{array}{ccc} \Sigma^0 & \sqrt{2}\Sigma^+ \ \sqrt{2}\Sigma^- & -\Sigma^0 \end{array}
ight)$$

J. Alimena et al., 2019 T. Hambye, F. S. Ling, L. Lopez Honorez and J. Rocher, 2009 R. Mahbubani, P. Schwaller and J. Zurita, 2017

Reproduction of ATLAS result

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Yong Du

5

What we find... Collider part

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

(HL-)LHC exclusion from cross section

Yong Du

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

FCC-pp discovery with different pileup control

M. Saito, R. Sawada, K. Terashi and S. Asai, 2019

Benchmark	$\sigma ~[{ m pb}]$	ϵ	S	B	S/\sqrt{B}
$m_{\Sigma^{\pm}} = 1.1 \mathrm{TeV}, \overline{\mu} = 200$	5.8×10^{-2}	3.17×10^{-4}	553	673	21.3
$m_{\Sigma^{\pm}} = 1.1 \mathrm{TeV}, \overline{\mu} = 500$	5.8×10^{-2}	3.17×10^{-4}	553	8214	6
$m_{\Sigma^{\pm}} = 3.1 \mathrm{TeV}, \overline{\mu} = 200$	9.4×10^{-4}	4.69×10^{-4}	13.3	1.9	9.6
$m_{\Sigma^{\pm}} = 3.1 \mathrm{TeV}, \overline{\mu} = 500$	9.4×10^{-4}	4.69×10^{-4}	13.3	27	2.6

3TeV triplet DM could be discoverable at FCC-pp

Collider searches are a2 insensitive!

What we find...

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Colliders+relic abundance

What we find...Combination

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Yong Du

Summary

- 1. We study the real triplet (1,3,0) model with the neutral triplet component being our dark matter candidate.
- 2. Current LHC and HL-LHC (would) exclude the triplet lighter than ~300GeV and ~800GeV. FCC-pp could discover 3 TeV triplet depending on pileup control.
- 3. XENON1T rules out 1~2TeV triplet (depending on a2), XENON20T would cover almost the entire parameter space.
- 4. Collider and dark matter direct detection are complementary.

Backup

Spin-independent DM-nucleon cross section

Klasen et al, arXiv: 1507.03800

Production cross section: a2 dependence

Cuts applied for the (HL-)LHC

- Trigger : $p_T > 140 \,\text{GeV}$
- Lepton veto : no electrons or muons
- Jet $p_T/\Delta\phi$: at least one jet with $p_T > 140 \,\text{GeV}$, and $\Delta\phi$ between the p_T vector and each of the up to four hardest jets with $p_T > 50 \,\text{GeV}$ to be bigger than 1.0
- Tracklet selection : at least one tracklet (generator-level chargino) with :

 $- p_T > 20 \,\text{GeV}$ and $0.1 < |\eta| < 1.9$

- 122.5 mm < decay position $< 295 \ \rm{mm}$
- ΔR distance between the tracklet and each of the up to four highest- p_T jets with $p_T>50\,{\rm GeV}$ to be bigger than 0.4
- we apply the tracklet acceptance \times efficiency map⁶ provided by ATLAS, which is based on the decay position and η . This is applied to selected tracklets passing the above selections.
- Tracklet p_T : Select tracklets with $p_T > 100 \text{ GeV}$.

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Cuts applied for a 100TeV collider

- Trigger : $p_T > 1$ TeV or $p_T > 4$ TeV depending on the benchmark as discussed below.
- Lepton veto : no electrons or muons.
- Jet p_T/Δφ : at least one jet with p_T > 1 TeV, and Δφ between the p_T vector and each of the up to four hardest jets with p_T > 50 GeV to be bigger than 1.0.

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Constraints w/o including the Sommerfeld

Constraints from perturbativity and perturbative unitarity

Bell et al, arXiv: 2001.05335