SEARCHING FOR HIDDEN/DARK SECTORS WITH THE NA64 EXPERIMENT AT THE CERN SPS

Paolo Crivelli, ETH Zurich, Institute for Particle Physics and Astrophysics
DARK SECTOR (DS) charged under a new U(1)’ gauge symmetry and interacts with SM through kinetic mixing (ϵ) of a MASSIVE VECTOR MEDIATOR (A’) with our photon.

Dark matter with mass (m_χ), part of DS. Four parameters: m_A, m_χ, α_D, ϵ

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} F'_\mu F'^\mu + \frac{\epsilon}{2} F'_\mu F'^\mu + \frac{m^2_A}{2} A'_\mu A'^\mu$$

$$+ i\bar{\chi}_\gamma^\mu \partial_\mu \chi - m_\chi \bar{\chi} \chi - \alpha D_\chi_\gamma^\mu A'_\mu \chi,$$
In this framework DM can be produced thermally in the early Universe.

\[\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4} \]

Large range for \(g_X \) and \(m_X \)

1) BEAM DUMP APPROACH (MiniBooNE, LSND, NA62...)

Flux of X generated by decays of A's produced in the dump.

Signal: X scattering in far detector

\[\sigma \propto \epsilon^4 \alpha_D \]
2) NA64/LDMX APPROACH

NA64 **missing energy**: produced A's carry away energy form the active dump used to measure recoil e- energy

\[\sigma \propto \epsilon^2 \]
EXPLICIT TARGET FOR NA64 (y, m_X) DM PARAMETER SPACE

$y = \epsilon^2 \alpha_D (m_X/m_{A'})^4$

Cross sections DM \to SM annihilation is $\sim Y$, useful variable to compare exp. sensitivities

Solid lines predictions from DM relic abundance

Recent review [https://arxiv.org/pdf/1707.04591.pdf]

EXPLICIT TARGET FOR NA64 \((y,m_X)\) DM PARAMETER SPACE

NA64

\[y = \epsilon^2 \alpha_D \left(\frac{m_X}{m_{A'}} \right)^4 \]

Probed

Solid lines predictions from DM relic abundance

NA64e TARGET

Higher mass region could be covered by NA64mu (pilot run in 2021)

PLB796, 117 (2019)
The NA64 method to search for $A' \rightarrow \chi \overline{\chi}$

Diagram:*

- **TAGGED 100 GeV**
- **Requested ECAL ENERGY < 50 GeV**
- **“BREMSSTRAHLUNG” OF A’**

Active Dump

ELECTROMAGNETIC CALORIMETER (ECAL)

$\sqrt{\alpha_D} = g \chi$

Paolo Crivelli | 26.05.2020 | 8
Signature for the invisible decay $A' \rightarrow \chi \bar{\chi}$ - large missing energy

\[
\gamma \rightarrow e^+e^- A'
\]

ELECTROMAGNETIC CALORIMETER (ECAL)

HADRONIC CALORIMETER (HCAL)

STANDARD MODEL:
$E_{\text{ECAL}} + E_{\text{HCAL}} = 100 \text{ GeV}$

$A' \rightarrow \text{MISSING ENERGY}:
\begin{align*}
\text{ECAL} &< 50 \text{ GeV} \\
\text{HCAL} &< 2 \text{ GeV}
\end{align*}$
The Electromagnetic Calorimeter (ECAL)

- Active target

- High hermeticity (\(\sim 40 \times 0\))
- PbSc sandwich, 6x6 matrix, cells 38x38x490 mm³
- WLS fibers in spiral → suppress energy leaks
- Energy resolution \(\sim 9\%/\sqrt{(E[GeV])}\)
- Longitudinal (Pre-shower) and lateral segmentation → shower profiles (hadron rejection)

100 GeV electrons (tagged with \(S_{1,2,3}\))
The Hadronic Calorimeter (HCAL)

- High hermeticity due to Lorentz boost

- High hermeticity: 4 HCAL (~7 λ/module)
- FeSc sandwich 3x3 matrix, cells 19.4x19.2x150 cm³
- WLS fibers in spiral → suppress energy leaks
- Energy resolution ~ 60%/√(E[GeV])
The magnetic spectrometer

D. Banerjee et al., Advances in HEP, 105730 (2015)

Reconstruction of e⁻ incoming momentum

Two bending magnets in series → 7 T.m field

D. Banerjee et al., NIMA881 (2018) 72-81
The Synchrotron radiation detector (e- tagging)

Particle identification
SR emission $\sim 1/m^4$

e- efficiency > 95%
Suppression π, $K>10^{-5}$

E. Depero et al., NIMA 866 (2017) 196-201.
The NA64 search for $A' \rightarrow \chi \bar{\chi}$ - results (July + October 2016, 5 weeks)

- 4×10^{10} electrons on target
- No event in signal box
- → exclusion of most of g-2 muon favored region
- g-2 closed completely by BABAR results

Improvement of setup for 2018 run

HCAL0: Rejection of events with hard neutral from upstream e- interactions

ST1,2: New straw-tube trackers: VETO against hadron electro-production in the beam material upstream the ECAL.
Combined results (2016-2018)

NEW constraints on sub-GeV DM parameter space (2016-2018)

First time NA64 constraints on light thermal DM exceeding sensitivity of beam dump exp. (suppressed by $\epsilon^2\alpha_D$)

Current bounds on thermal relic DM & projected NA64 sensitivity

\[\alpha_D = 0.1 \]
\[m_{A'} = 3m_\chi \]

New VHCAL: to improve detector hermiticity and reject high-p\(_T\) hadronic secondaries from beam interactions upstream the ECAL dump. Search expected to be BKG free up to \(\sim 10^{13} \) EOT
2) The NA64 search for $X/A' \rightarrow e^+e^-$

VISIBLE DECAY MODE \[m'_{A} < 2m_{X} \]

Pair production of SM particles
8Be anomaly and X boson

Could be explained by new ‘protophobic’ gauge boson X with mass around 17 MeV

The NA64 search for $X \rightarrow e^+e^-$ - experimental setup

Addition of W calorimeter
Short in length to allow X to escape

Zooming in (next slide)
The NA64 search for $X \rightarrow e^+e^-$ - experimental signature

Signature:
1) $E_{\text{WCAL}} + E_{\text{ECAL}} = 100$ GeV
2) No activity in $V_{2,3}$ and HCAL
3) Signal in S3, S4
4) e-m shower in ECAL
The NA64 search for $X \rightarrow e^+e^-$ - results (2017-2018)

No signal-like event in signal box

~ 8×10^{10} EOT

NA64 collaboration, PRL 120, 231802 (2018), PRD 107, 071101 (R) 2020
The NA64 search for $X \rightarrow e^+e^-$ - prospects (2021)

Feasibility under study

NA64 collaboration, PRL 120, 231802 (2018), PRD 107, 071101 (R) 2020
The NA64 search for ALP

Production via Primakoff effect

\[e^- Z \rightarrow e^- Z \gamma; \gamma Z \rightarrow a Z; a \rightarrow \gamma \gamma \]

Closing the gap between beam dump and colliders

Search expected to be BKG free up to \(~5 \times 10^{12} \) EOT

The NA64 physics prospects

<table>
<thead>
<tr>
<th>Process</th>
<th>New Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^- beam</td>
<td></td>
</tr>
<tr>
<td>$A' \to e^+e^-$, and $A' \to invisible$</td>
<td>Dark photon</td>
</tr>
<tr>
<td>$X \to e^+e^-$</td>
<td>Dark Sector, charge quantisation</td>
</tr>
<tr>
<td>milliQ particles</td>
<td>Axion-like particles</td>
</tr>
<tr>
<td>μ^- beam</td>
<td></td>
</tr>
<tr>
<td>$Z_\mu \to \nu\nu$</td>
<td>gauge Z_μ-boson of $L_\mu - L_\tau < 2m_\mu$</td>
</tr>
<tr>
<td>$Z_\mu \to \chi\chi$</td>
<td>$L_\mu - L_\tau$ charged Dark Matter (χ)</td>
</tr>
<tr>
<td>milliQ</td>
<td>Dark Sector, charge quantisation</td>
</tr>
<tr>
<td>$a_\mu \to invisible$</td>
<td>non-universal ALP coupling</td>
</tr>
<tr>
<td>$\mu - \tau$ conversion</td>
<td>Lepton Flavour Violation</td>
</tr>
<tr>
<td>π^-, K^- beams</td>
<td>Current limits, PDG'2018</td>
</tr>
<tr>
<td>$\pi^0 \to invisible$</td>
<td>$Br(\pi^0 \to invisible) < 2.7 \times 10^{-7}$</td>
</tr>
<tr>
<td>$\eta \to invisible$</td>
<td>$Br(\eta \to invisible) < 1.0 \times 10^{-4}$</td>
</tr>
<tr>
<td>$\eta' \to invisible$</td>
<td>$Br(\eta' \to invisible) < 5 \times 10^{-4}$</td>
</tr>
<tr>
<td>$K_S^0 \to invisible$</td>
<td>no limits</td>
</tr>
<tr>
<td>$K_L^0 \to invisible$</td>
<td>no limits</td>
</tr>
</tbody>
</table>

Could provide an explanation of (g-2)$_\mu$ anomaly

CERN-PBC-REPORT-2018-007

NA64 program: submitted as input to the European Strategy Group in the context of the PBC

CERN Council Open Symposium on the Update of European Strategy for Particle Physics
13-16 May 2019 - Granada, Spain
Summary and Outlook

- NA64: Active beam dump + missing-energy approach is very powerful probe for Dark Sector physics.
- Experiment exceeded sensitivity of previous beam dump exps. to thermal light dark matter.
- To fully exploit NA64 potential probing most of the remaining parameter space predicted by the DM relic density accumulate 5×10^{12} EOT for $A' \rightarrow \chi \bar{\chi}$ after LS2
- Exploration of the remaining parameter space $X \rightarrow e^+e^-$
- New permanent location being prepared with active participation of NA64.
- Proposed searches in NA64 with leptonic and hadronic beams: unique sensitivities highly competitive/complementary to similar projects.