ETH zürich

SEARCHING FOR HIDDEN/DARK SECTORS WITH THE NA64 EXPERIMENT AT THE CERN SPS

Paolo Crivelli, ETH Zurich, Institute for Particle Physics and Astrophysics

DARK SECTORS - THE VECTOR PORTAL

DARK SECTOR (DS) charged under a new U(1)' gauge symmetry and interacts with SM through kinetic mixing (ϵ) of a MASSIVE VECTOR MEDIATOR (A') with our photon. Dark matter with mass (m_x), part of DS. Four parameters: m_{A'}, m_x, α_D , ϵ

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} + i \bar{\chi} \gamma^{\mu} \partial_{\mu} \chi - m_{\chi} \bar{\chi} \chi - \alpha_D \bar{\chi} \gamma^{\mu} A'_{\mu} \chi,$$

Paolo Crivelli | 26.05.2020 | 2

DARK SECTORS - THE VECTOR PORTAL

In this framework DM can be produced thermally in the early Universe

OBSERVED AMOUNT OF DARK MATTER TODAY

$$\Omega_X \propto rac{1}{\langle \sigma v
angle} \sim rac{m_X^2}{g_X^4}$$

Large range for g_X and m_X

J. Feng and J. Kumar Phys.Rev.Lett.101:231301,2008

SEARCHES FOR DARK SECTORS AT ACCELERATORS

INVISIBLE DECAY MODE $m_A' > 2m_X$

1) BEAM DUMP APPROACH (MiniBooNE, LSND, NA62...)

Flux of X generated by decays of A's produced in the dump.Signal: X scattering in far detector

$$\sigma \propto \epsilon^4 \alpha_D$$

SEARCHES FOR DARK SECTORS AT ACCELERATORS

INVISIBLE DECAY MODE $m_A' > 2m_X$

2) NA64/LDMX APPROACH

NA64 **missing energy**: produced A's carry away energy form the active dump used to measure recoil e- energy 2

$$\sigma \propto \epsilon^2$$

Paolo Crivelli | 26.05.2020 | 5

useful variable to compare exp. sentivities

mmetric Targets for DM-e Scattering

c Scalar

0

TARGET FOR NA64 (y,mx) DM PARAMETER SPACE

recent review https://arxiv.org/pdf/1707.04591.pdf

The NA64 method to search for A' $\rightarrow \chi \overline{\chi}$

Signature for the invisible decay A' $\rightarrow \chi \overline{\chi}$ - large missing energy $^{\prime}$

The Electromagnetic Calorimeter (ECAL)

The Hadronic Calorimeter (HCAL)

The magnetic spectrometer

D. Banerjee et al., Advances in HEP, 105730 (2015)

MU4

The Synchrotron radiation detector (e-tagging)

$\rightarrow \chi \overline{\chi}$ - results (July + October 2016, 5 weeks)

 \rightarrow exclusion of most of g-2 muon favored region

g-2 closed completely by BABAR results

NA64 collaboration, Phys. Rev. Lett. 118, 011802 (2017) and Phys. Rev. D 97, 072002 (2018)

Improvement of setup for 2018 run

HCAL0: Rejection of events with hard neutral from upstream e- interactions

ST1,2: New straw-tube trackers: VETO against hadron electro-production in the beam material upstream the ECAL.

Combined results (2016-2018)

 10^{-2}

Signal efficiency: ~50% slightly mass dependent.

E787, E949 a, BaBar ω a, favored 10^{-3} COUPLING 63 10^{-4} NA64 10^{-5} 10^{-2} 10^{-3} 10^{-1} 101 $m_{A'}, GeV$

MASS OF THE DARK PHOTON

NA64 collaboration, Phys. Rev. Lett. 123, 121801 (2019)

NEW constraints on sub-GeV DM parameter space (2016-2018)

New VHCAL: to improve detector hermiticity and reject high-pt hadronic secondaries from beam interactions upstream the ECAL dump. Search expected to be BKG free up to ~ 10¹³ EOT

2) The NA64 search for X/A' \rightarrow e⁺e⁻

Pair production of SM particles

⁸Be anomaly and X boson

A. J. Krasznahorkay et al. Phys. Rev. Lett.116, 042501 (2015) and new results for 4He arXiv:1910.10459

Could be explained by new 'protophobic' gauge boson X with mass around 17 MeV

J. L. Feng et al. Phys. Rev. D95, 035017 (2017)

The NA64 search for $X \rightarrow e^+e^-$ - experimental setup

The NA64 search for $X \rightarrow e^+e^-$ - experimental signature

The NA64 search for $X \rightarrow e^+e^-$ - results (2017-2018)

NA64 collaboration, PRL 120, 231802 (2018), PRD 107, 071101 (R) 2020

 $m_{A'}, GeV$

The NA64 search for $X \rightarrow e^+e^-$ - prospects (2021)

NA64 collaboration, PRL 120, 231802 (2018), PRD 107, 071101 (R) 2020

 $m_{A'}, GeV$

The NA64 search for ALP

NA64 collaboration, CERN-EP-2020-068 arXiv:2005.02710

Production via Primakoff effect

ECAL VETO HCAL1

HCAL3

HCAL2

$$e^-Z \to e^-Z\gamma; \gamma Z \to aZ; a \to \gamma\gamma$$

Closing the gap between beam dump and colliders

Search expected to be BKG free up to ~ 5×10^{12} EOT

Paolo Crivelli | 26.05.2020 | 25

The NA64 physics prospects

Process	New Physics
e^- beam	
$A' \to e^+e^-$, and	Dark photon
$A' \rightarrow invisible$	
$A' \to \chi \overline{\chi}$	sub-GeV Dark Matter (χ)
$X \to e^+ e^-$	new gauge X - boson
milliQ particles	Dark Sector, charge quantisation
$a \rightarrow \gamma \gamma, invisible$	Axion-like particles
μ^- beam	
$Z_{\mu} ightarrow u u$	gauge Z_{μ} -boson of $L_{\mu} - L_{\tau}, < 2m_{\mu}$
$Z_{\mu} o \chi \overline{\chi}$	$L_{\mu} - L_{\tau}$ charged Dark Matter (χ)
milliQ	Dark Sector, charge quantisation
$a_{\mu} \rightarrow invisible$	non-universal ALP coupling
$\mu - \tau$ conversion	Lepton Flavour Violation
$\pi^-, \ K^-$ beams	Current limits, PDG'2018
$\pi^0 \rightarrow invisible$	$Br(\pi^0 \rightarrow invisible) < 2.7 \times 10^{-7}$
$\eta \rightarrow invisible$	$Br(\eta \rightarrow invisible) < 1.0 \times 10^{-4}$
$\eta' \rightarrow invisible$	$Br(\eta' \rightarrow invisible) < 5 \times 10^{-4}$
$K_S^0 \to invisible$	no limits
$K^0 \rightarrow invisible$	no limits
\mathbf{n}_L / <i>investore</i>	

NA64 program: submitted as input to the European Strategy Group in the context of the PBC

CERN-PBC-REPORT-2018-007

Could provide an explanation of $(g-2)_{\mu}$ anomaly

CERN Council Open Symposium on the Update of European Strategy for Particle Physics

13-16 May 2019 - Granada, Spain

Summary and Outlook

- NA64: Active beam dump + missing-energy approach is very powerful probe for Dark Sector physics.
- Experiment exceeded sensitivity of previous beam dump exps. to thermal light dark matter.
- To fully exploit NA64 potential probing most of the remaining parameter space predicted by the DM relic density accumulate $5x10^{12}$ EOT for $A' \rightarrow \chi \overline{\chi}$ after LS2
- Exploration of the remaining parameter space $X \rightarrow e^+e^-$
- New permanent location being prepared with active participation of NA64.
- Proposed searches in NA64 with leptonic and hadronic beams: unique sensitivities highly competitive/complementary to similar projects.