The SHiP scattering and neutrino detector (SND) operating at LHC Giovanni De Lellis Università «Federico II» and INFN, Napoli, Italy On behalf of the SHiP Collaboration ## Neutrino physics at the LHC - Klaus Winter, 1990, observing tau neutrinos at the LHC - A. De Rùjula, E. Fernandez and J. J. Gòmez-Cadenas, 1993, Neutrino fluxes at LHC - F. Vannucci, 1993, neutrino physics at the LHC - http://arxiv.org/abs/1804.04413 Bustamante and Connolly PRL 122 (2019) 041101 #### OPEN ACCESS IOP Publishing J. Phys. G: Nucl. Part. Phys. 46 (2019) 115008 (19pp) Journal of Physics G: Nuclear and Particle Physics https://doi.org/10.1088/1361-6471/ab3f7c ## Physics potential of an experiment using LHC neutrinos N Beni¹, M Brucoli², S Buontempo⁵, V Cafaro⁴, G M Dallavalle^{4,8}, S Danzeca², G De Lellis^{2,3,5}, A Di Crescenzo^{3,5}, V Giordano⁴, C Guandalini⁴, D Lazic⁶, S Lo Meo⁷, F L Navarria⁴ and Z Szillasi^{1,2} CERN is unique in providing energetic \mathbf{v} (from LHC) \rightarrow measure pp $\rightarrow \mathbf{v}$ X in an unexplored domain ## Neutrinos from W and b,c decays Br (Tau neutrinos) ~ 33% Tau neutrinos $\sim 5\%$ for $6.5 < \eta < 9$ W decays could be tagged at IP detectors \rightarrow tagging of the neutrino flavour \rightarrow lepton flavour violation studies although with low statistics ## Investigating the background for a neutrino detector in different locations VN = Q1 in S45 at 25m N = UJ53 and UJ57 at 90-120m F = RR53 at 237m VF = TI18 at 480m #### In situ measurements with an emulsion detector: e.g. at the F location #### In situ measurements At the same time FASER inspected sites near IP1 and found that the decommissioned LEP injection tunnels are quite well protected (FASER TP, CERN LHC-2018-036, LHCC-P-013) FASER installed in TI12 \rightarrow TI18 available. It is symmetric to TI12 at opposite end of IP1 and in both areas the background is reduced due to LHC magnetic bend and the absorption in \sim 100 m of rock. ## Physics perspective: neutrinos and QCD - pp $\rightarrow v$ X in the range 6.5< η < 9: neutrinos are mostly produced by charm decays in this angular range - Prediction for (beauty and) charm yield at such small angles are affected by large uncertainties and unconstrained by measurements - LHCb measurements covering larger (compared to ATLAS and CMS) η ranges but not to this extent - Neutrino detection as a tool to measure heavy flavour production at very small angles (large η) \rightarrow important QCD task ## Flux of different neutrino types - Transportation through machine elements and rock by Cerutti's group using FLUKA - In the η region covered by the detector (7.2 < η < 8.7): - ν_e and ν_τ mainly from the decay of charmed hadrons Soft ν_μ component produced by π and K decays $=^{10}$ ### The SHiP experiment at the Beam Dump Facility - Designed for large acceptance and zero background - Wide physics program - □ Variety of possible decay modes - □ Tau-neutrino physics - Light Dark Matter Tracker spectrometer **Particle ID** #### Scattering and Neutrino Detector Alternating Emulsion Cloud Chamber (ECC) and SciFi planes 3x Downstream Trackers The magnet - □ 1.2 T horizontal field - □ Copper coil - □ Cooling system - □ Thermal insulation - □ Internal volume temperature: 18°C The Muon ID System ☐ Iron absorbers SIDE VIEW □ RPC as tracking detectors ## SND concept at the LHC ## Detector layout in the TI18 tunnel **Veto**: 1 Scintillator plane **Target:** 4-5 ECC brick walls **Target Tracker:** 4-5 SciFi x-y planes Muon Id system: 8x20 cm Iron blocks & scintillating bars **Timing detector:** 8 Scintillator planes (<100 ps) Mechanical design and integration ## Detector Integration in the TI18 tunnel - Several iterations with the CERN groups: - EN-SMM, HSE-OHS, HSE-RP, EN-HE, EN-EL-EIC, EN-EL-FC, IT-CS-DO, EN-CV, IT-CS-CS, EN-STI-BMI, EN-EA-AS, BE-OP-LHC & EN-ACE-OSS. - Items considered: - Cooling & ventilation. - Powering & lighting. - Signals, readout and networking. - Survey. - Transport. - Safety. - Radiation protection. - Radiation protection to electronics. ## Key features: muon ID and energy measurement - ν_{μ} CC interactions identified thanks to the identification of the μ produced in the interaction - Muon ID at \mathbf{v} vertex crucial also to discard charmed hadron production, background to v_{τ} CC interactions | | % evts
CC-DIS | % evts
NC-DIS | |----|------------------|------------------| | 0μ | 34.1 | 99.7 | | 1μ | 64.5 | 0.3 | | 2μ | 1.2 | 0.03 | ## Neutrino statistics (150 fb⁻¹ in Run3) | Neutrino | < E > | Neutrino | < E > | CC | |--|------------|-------------------------|----------------|--------------| | flavour | ${ m GeV}$ | Flux | GeV | Interactions | | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | 146.4 | 2.5 x 10 ¹² | 471.1 | 975 | | $ u_e$ | 376.4 | 3.3×10^{11} | 731.5 | 332 | | $ u_{ au}$ | 421.8 | 1.7×10^{10} | 749.6 | 18 | | $ar{ u}_{\mu}$ | 150.3 | 2.2×10^{12} | 500.2 | 429 | | $ar{ar{ u}_e}$ | 382.2 | 3.5×10^{11} | 748.8 | 174 | | $ar{ u}_{ au}$ | 401.6 | 1.5 x 10 ¹⁰ | 747.6 | 7 | | ТОТ | | 54.1 x 10 ¹² | | 1935 | - Total target mass of ~850 kg # #### Incoming ν #### Interacting ν #### DARK MATTER SEARCH #### DARK MATTER SEARCH **☐** Important to explore sub-GeV mass region #### Light Dark Matter (LDM) search #### **Signal model** #### **Production** We consider a scalar/fermionic LDM χ candidate, produced in the prompt decay of a **Dark Photon** (Vector Portal) in a minimal extension of the Standard Model U'(1), with $m_{A'} \sim O(1 \text{ GeV/c}^2)$: $$\mathcal{L}_{A'} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{m_{A'}^2}{2} A'^{\mu} A'_{\mu} - \frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu}$$ #### Interaction **LDM** observed through its **elastic scattering** off the detector atomic electrons, $\chi e^- \rightarrow \chi e^-$ #### **Backgrounds** Neutrino interactions mimicking the signal topology: i.e. : v_e, \overline{v}_e CC Deep Inelastic Scattering - $\nu_e, \overline{\nu}_e$ CC Quasi-Elastic - $\cdot v_e, \overline{v}_e$ CC Resonant - $v_{e/\mu}$, $\overline{v}_{e/\mu}$ Elastic scattering with electrons Full MC simulation with Fluka and Genie - Visibility cut on the primary tracks momentum to identify background (charged: 100 MeV/c ; protons: 170 MeV/c) - No event expected for both Pilot and Full runs. ⇒ Zero background search ## Electromagnetic shower detection in the ECC PRL 120 (2018) 211801 One of the OPERA electron neutrino candidates JHEP 1307 (2013) 004 #### Sensitivity to Light Dark Matter with 150 fb⁻¹ - Signal MC simulation with Pythia and MadDump - Benchmark scenario adopted: $m_{A'}=3m_\chi$, $\alpha_D=g_D^2/4\pi=0.1$ ## Final remarks - Interesting case for neutrino/QCD physics and dark matter search - Proposal submitted to the LHCC in February, CERN-LHCC-2020-002 / LHCC-I-035, https://cds.cern.ch/record/2709550 - Detector design and integration study complete: the infrastructure can be installed during 6 months after the approval - Electronic detector commissioning on surface in 2021 - Start taking data in 2022 feasible