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Strongly interacting dark sectors

@ What if the dark sector resembles QCD?
= DM could be meson/baryon in confining dark sector

@ Cosmology: relic density from interactions within dark sector
Hochberg et al., 1411.3727

@ Astrophysics: possible resolution of DM small-scale problems (SIDM)
Hochberg et al., 1402.5143

@ Novel LHC phenomenology:

o dark showers

e semi-visible jets Cohen et al., 1707.05326
e emerging jets Schwaller et al., 1502.05409
[}

displaced vertices (Patrick’s talk)
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Dark showers at the LHC

@ Benchmark: dark SU(3), dark pion DM, consistent cosmology
EB et al., 1907.04346
@ Production of dark quarks at the LHC via heavy vector mediator
@ Shower and hadronisation in dark sector (PyTHIA HIDDEN VALLEY)

e 10 - 20 dark
mesons in an
event

@ Most escape the
detector as F1

° pg decay to
visible jets
= Semi-visible jets

mz ~ O(TeV), mz ~ m, ~ O(GeV)
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Existing and prospective LHC searches
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Two classes of events:
o If one dark shower stays invisible:
= Limits from existing monojet and SUSY searches
@ If both dark showers become partly visible:
= Prospective semi-visible jet search: bump hunt in My for small A¢

Cohen et al., 1707.05326
improves existing limits only under optimistic assumptions
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Can we do better with machine learning?

@ Proposed semi-visible jet search does not use jet substructure
@ Semi-visible jets differ substantially from QCD

=- Train a neural network classifier to distinguish dark showers
from QCD

@ Wide range of supervised and unsupervised ML approaches for jet
classification, most commonly benchmarked on top tagging
Kasieczka et al., 1902.09914
For example convolutional neural networks on jet images

@ Dark showers more similar to QCD than tops: varying number of light
dark mesons with varying missing energy between
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Dynamic Graph CNN

@ Originally from computer vision Wang et al., 1801.07829
@ Recently used as jet tagger: ParticleNet Qu, Gouskos, 1902.08570
Jets as point clouds
o Every constituent is a point in a high-dimensional feature space
e No ordering
Edge convolution
e For each point construct graph of k nearest neighbours
o Carry out convolution over edges (features of pairs of neighbours)
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Wang et al., 1801.07829
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DGCNN performance in comparison to other networks
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@ Signal: semi-visible jets from dark showers, background: QCD jets

@ DGCNN outperforms CNN operating on jet images as well as LoLa on
4-vectors
@ Advantage of DGCNN is much larger than in top tagging benchmark
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Varying dark sector parameters
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@ Characteristic parameters: ry,, and dark meson mass Myeson

@ Dark showers with larger ry,, easier to identify, except at very low ryy
@ Moderate effect of different dark meson masses
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Mitigating model-dependence
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dotted: trained on mMyeson = 5 GeV dashed: trained on mixed sample

@ Network learns to reconstruct the dark meson mass

@ Training on a mixed sample mitigates model dependence
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Applied to monojet analysis

By how much can we improve an
tagger?

= Monojet search as example

analysis with our dark shower

ATLAS-CONF-2017-060

mz =1 TeV, rj,, = 0.75, trained on signal region

25 Exclusion limit improvement for ATLAS monojet
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@ Train on dark showers and dominant background (Z+jets), separately
for each signal region
@ Require at least one jet tagged as dark shower after usual cuts
= Sensitivity increased by factor ~ 20
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Conclusions

@ Strongly interacting dark sectors are a well motivated scenario
predicting exciting new LHC signatures (including LLPs)

o Difficult to identify with conventional methods: great opportunity for
machine learning

Graph nets are particularly well suited to this task
Model dependence can be mitigated, e.g. with mixed training

Increases the sensitivity of searches by a lot

Can reach into parameter space not covered by prompt or LLP
searches

@ Still thinking about unsupervised techniques that works for dark
showers and general new physics
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Consistent benchmark model

SU(3)qark x U(1),

mediator

@ 2 flavours of dark quarks gq e Z' mediator ~ O(TeV)
coupling to gsm and qq

confinement at Ag

o 78, ¥, pY, pT ~ O(GeV) o Z'nimy, Z'pipy coupling
e Dark pions are DM (stable) o Z'-pY mixing = p3 unstable
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Freeze-out

@ pq in equilibrium in early Universe if [ o > H
@ m4-pq decoupling sets DM relic density

@ Dominant freeze-out process: mqmq — pPdpd
(forbidden DM, D'Agnolo et al., 1505.07107)
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@ Relic density can be easily produced by adjusting m,/m;.
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Architectures
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