Light Hidden Mesons Inspired by Neutral Naturalness

Lingfeng Li (HKUST)

25, May, 7th workshop of the LHC LLP Community

1905.03772 w/ H-C. Cheng, E. Salvioni and C. Verhaaren

Neutral Naturalness

Top partners gauged under hidden SU(3) to avoid strong bounds

Folded SUSY Twin Higgs [Z. Chacko, H.-S. Goh, and R. Harnik, [G. Burdman, Z. Chacko, H.S. Goh and R. 0506256] Harnik, 0609152] t_R u_{Am} Standard Model q_{An} \tilde{q}_{Bm}^c or \tilde{q}_{Bn}^c t'_L, t'_R \tilde{q}_{Bn} or \tilde{u}_{Bm} or \tilde{q}_{Bn} or \tilde{u}_{Bm} Little Higgs Supersymmetry Twin Higgs ???

EW Portal: Quirky bound state formed by EW charged states: **High threshold** Higgs Portal: Exotic h->XX, X=Glueball, Twin b hadron, etc. **Low threshold**

Low threshold EW Portal Signal?

Alternate Tripled Top (TT) Model & Accidental SUSY

The superpotential:

M.Mccullough.1803.03647]

 $W'_{Z_3} = y_t (Q_A H u_A^c + Q_B H u_B^c + Q_C H u_C^c) + \omega (u'_B u_B^c + u'_C u_C^c) + M (Q_B Q_B'^c + Q_C Q_C'^c)$ $Q_{A} \ u_{A}^{c} \ \text{SM top sector} \\ Q_{B,C} = \begin{pmatrix} t_{B,C} \\ b_{B,C} \end{pmatrix} \sim 2_{-1/2} \\ u_{B/C}^{c} \sim \mathbf{1}_{0} \end{pmatrix} \sim 2_{-1/2} \qquad M^{2} + y_{t}^{2}h^{2} \qquad \text{Higgs potential left}$ $y_t^2 h^2$ t_A, u_A^c $Q_{B/C}$ For details of the original model, see our paper [H-C.Cheng, LL, E.Salvioni and C. Verhaareen 1803.03561] **Related Work:** [T.Cohen, N.Craig, G.Giudice, 1803.03651 1905.03772 20xy.ijklm

A Cartoon of Alternate TT Model: A Case with Much More Fun

Spectrum & Decay (One-Flavor QCD)

Proper decay length of the Pseudoscalar, Vector and Scalar

EW Portal Production (Z Exotic Decay)

Exotic BR of h is not large ($<\sim O(10^{-4})$), the constraints are weaker than those from Z decays ($\sim 10^3$ more Z than h produced @ LHC)

2 Body Limit: Displaced S decays

2 Body Limit: Displaced P decays

Many body limit: Emerging Jets @ TeraZ & LHC

Trying to tag each jet, SM jet as bkg [CMS Collaboration, 1810.10069]

@LHC, if relying on $ZZ \rightarrow II$ recoil +dark jets..... exotic BR(Z) down to O(10⁻⁴ -10⁻⁵)

Many body limit: Dark Jets @LHCb

Tigger is no longer an issue (See Alex's talk)

```
BR(V\rightarrowµµ)~5% for m<sub>v</sub>~1 GeV
```

Find single displaced µµ vertex with stringent isolation cut [A. Pierce, B. Shakya, Y. Tsai and Y. Zhao, 1708.05389]

VErtex LOcator (VELO)

High Track Resolution (a few µm after upgrade) [LHCb VELO Collaboration, 1302.6035] M [TeV]

Dark Photon Mode of Production

Minimally, if sector B and C share the same SU(3) gauge group, we will have two flavors. We can further generalize the relevant Lagrangian as:

$$\mathcal{L} = -H\overline{Q}_L \mathbf{Y}\psi_R - H\overline{Q}_R \widetilde{\mathbf{Y}}\psi_L - \overline{\psi}_L \boldsymbol{\omega}\psi_R - \overline{Q}_L \mathbf{M}Q_R + \text{H.c.}$$

 $\mathbf{Y}, \, \widetilde{\mathbf{Y}}, \, \boldsymbol{\omega}, \text{ and } \mathbf{M} \text{ are all } N \times N \text{ matrices in the flavor space}$

Z & Higgs exotic decays now depending on the Yukawa structure

$$\begin{aligned} & \mathrm{BR}(Z \to \hat{f}\hat{f}) \approx 1.1 \times 10^{-5} \left\{ \mathrm{Tr}\left[\left(\boldsymbol{Y}^{\dagger}\boldsymbol{Y} \right) \right]^2 + \left(\boldsymbol{Y} \to \widetilde{\boldsymbol{Y}} \right) \right\} \left(\frac{2\,\mathrm{TeV}}{M} \right)^4 \\ & \mathrm{BR}(h \to \hat{g}\hat{g}) \approx 1.0 \times 10^{-4} \left(\frac{\alpha_d}{0.18} \right)^2 \left[\mathrm{Tr}\left(\boldsymbol{Y}^{\dagger}\boldsymbol{Y} + \widetilde{\boldsymbol{Y}}^{\dagger}\widetilde{\boldsymbol{Y}} \right) \right]^2 \left(\frac{2\,\mathrm{TeV}}{M} \right)^4 \left(\frac{c_Q}{4} \right)^2 \end{aligned}$$

Dark Pion: 2 flavor or more (in work)

$$oldsymbol{m}_{\psi} = \left(oldsymbol{\omega} - \widetilde{oldsymbol{Y}}^{\dagger} oldsymbol{M}^{-1} oldsymbol{Y} v^2
ight) \qquad m_{\psi'} \equiv oldsymbol{m}_{\psi, ext{diag}} = U_L^{\dagger} oldsymbol{m}_{\psi} U_R$$
 $A_{ij} = \left(U_R^{\dagger} oldsymbol{Y}^{\dagger} oldsymbol{M}^{-2} oldsymbol{Y} U_R
ight)_{ij} \qquad \widetilde{A}_{ij} = \left(U_L^{\dagger} \widetilde{oldsymbol{Y}}^{\dagger} oldsymbol{M}^{-2} \widetilde{oldsymbol{Y}} U_L
ight)_{ij}$

Depending on how the flavor(isospin) symmetry is broken, the light dark pions can be either stable or prompt

$$\hat{\pi}_{a} \sim i(\overline{\psi}_{L}'\sigma_{a}\psi_{R}' - i\overline{\psi}_{R}'\sigma_{a}\psi_{L}') ,$$

$$\hat{\pi}^{(0)} = \hat{\pi}_{3}, \quad \hat{\pi}^{(\pm)} = (\hat{\pi}_{1} \pm i\hat{\pi}_{2})/\sqrt{2}$$

$$\Gamma(\hat{\pi}^{(\pm)} \to ff) = \frac{\pi}{8}N_{c}^{f}\alpha_{Z} \left|A_{12} - \widetilde{A}_{12}\right|^{2} \frac{m_{f}^{2}f_{\pi}^{2}m_{\pi}}{m_{Z}^{4}} \sqrt{1 - \frac{4m_{f}^{2}}{m_{\pi}^{2}}},$$

$$\Gamma(\hat{\pi}^{(0)} \to ff) = \frac{\pi}{16}N_{c}^{f}\alpha_{Z} \left|A_{11} - A_{22} - \widetilde{A}_{11} + \widetilde{A}_{22}\right|^{2} \frac{m_{f}^{2}f_{\pi}^{2}m_{\pi}}{m_{Z}^{4}} \sqrt{1 - \frac{4m_{f}^{2}}{m_{\pi}^{2}}}.$$

Outlook

Energy Frontier:	Intensity Frontier:
Advanced Triggering (Theme of 27 th !)	Synergies w/ flavor physics (Belle II etc.)
Time/HGCAL/tracking info (See Jia & Marat's talk)	Synergies w/ neutrino physics (DUNE etc. [Gouvea et. al. 1809.06388])
Full potential of various LLP detectors	Full potential of future lepton colliders
Cosmic Frontier:	Other Frontiers:
Cosmological constraints from Ω _{DM} and BBN ([LL, Y. Tsai 1901.09936], Sam's & Patrick's talks)	Lattice QCD results
	Machine Learning for detection
With more than 2 flavor: WZW interaction -> SIMPs?	Unexpected new ideas

Original Tripled Top (TT) Model

The superpotential:

 $W_{Z_3} = y_t \left(Q_A H u_A^c + Q_B H u_B^c + Q_C H u_C^c \right) + M \left(u_B' u_B^c + u_C' u_C^c \right) + \omega \left(Q_B Q_B'^c + Q_C Q_C'^c \right),$

<u>A few TeV</u>

A, B & C: 3 sectors charged under different SU(3), no extra SU(2)/U(1) gauge groups

A soft breaking term:
A few TeV (~M)

$$V_{s} = \widetilde{m}^{2} \left(|\widetilde{Q}_{A}|^{2} + |\widetilde{u}_{A}^{c}|^{2} \right) - \widetilde{m}^{2} \left(|\widetilde{u}_{B}^{c}|^{2} + |\widetilde{u}_{C}^{c}|^{2} \right) .$$

A Folded SUSY-like spectrum realized in 4D [G. Burdman, Z. Chacko, H.S. Goh and R. Harnik, 0609152]

1803.03651 1905.03772 20xy.ijklm

A few hundred GeV

Particle Components

$$Q_{B,C} = \begin{pmatrix} t_{B,C} \\ b_{B,C} \end{pmatrix} \sim \mathbf{2}_{-1/2}, \qquad Q_{B,C}^{\prime c} = \begin{pmatrix} b_{B,C}^{\prime c} \\ t_{B,C}^{\prime c} \end{pmatrix} \sim \mathbf{2}_{1/2},$$

$$\mathbf{I}_{B,C} = \begin{pmatrix} u_{B,C}^{\prime c} \\ u_{B,C}^{\prime$$

We can assign hyper change that there are electric-neutral states

Phenomenology (Original TT)

.Quirky bound states

. de-excite and annihilate e

13 TeV σ ($pp \rightarrow \overline{\psi}\psi \rightarrow /v$ or //) [fb] 5 The two leading channels are just $\Upsilon_{\pm 0} \rightarrow /v$ dilepton (Z'- like) and lepton+MET (W'-like). Strong constraints (~700 GeV) on ω 0.5 $\Upsilon_{+-}, \Upsilon_{00} \to \mathbb{N}$ 0.1 600 800 1000 1200 1400 1600 1800 2000 2ω [GeV]

Phenomenology (Original TT)

Neutral sfermion: (superpartner, ${}^{1}SU(2)$ singlet, mass $\sim \Delta$.

Exotic BR of Z

•As a vector, Z couple to both LL and RR, but RR dominates for larger mixing:

$$\frac{g_Z}{2}\sin^2\theta_R \overline{\psi}_{BR} \gamma^\mu \psi_{BR} Z_\mu \simeq \frac{g_Z}{2} \frac{m_t^2}{M^2 + m_t^2} \overline{\psi}_{BR} \gamma^\mu \psi_{BR} Z_\mu$$

Introduces exotic BR(Z) that's controlled by M only (PS not included)

$$\Gamma(Z \to \overline{\psi}_B \psi_B) \simeq \frac{N_d g_Z^2}{96\pi} \frac{m_t^4}{(M^2 + m_t^2)^2} m_Z \left(1 - \frac{m_\psi^2}{m_Z^2}\right) \sqrt{1 - \frac{4m_\psi^2}{m_Z^2}}$$
$$BR(Z \to \overline{\psi}_{B,C} \psi_{B,C}) \approx 2.2 \times 10^{-5} \left(\frac{2 \text{ TeV}}{M}\right)^4.$$

•Exotic BR of h is not large ($<\sim O(10^{-4})$), the constraints are weaker than those from Z decays ($\sim 10^3$ more Z than h at LHC)

A Cartoon of Revised TT Model: The not So Interesting Case

It could be just like this (when $\Delta < \omega$):

Nothing (very) interesting happens

The constraints are similar to the previous case, too weak in general

Soft SUSY Breaking Terms $m_{ij}^2 = m_{P_i}^2 + m_{\overline{P}_j}^2 - \frac{2}{b} \sum_{L} T_{r_k} \left(m_{P_k}^2 + m_{\overline{P}_k}^2 \right)$ $\widetilde{m}_P^2 \ \widetilde{m}_P^2 \ \widetilde{m}_P^2$ $\widetilde{m}_P^2 \widetilde{m}_P^2 \widetilde{m}_P^2$ $\widetilde{m}_{\overline{P}_{2}}^{2} \left(\widetilde{m}_{\overline{P}_{2}}^{2} \\ \widetilde{m}_{\overline{P}_{1}}^{2} \right)$ $\begin{array}{c} Q_A \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \widetilde{m}_{\overline{P}}^2 \\ \widetilde{m}_{\overline{P}}^2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \widetilde{m}_{\overline{P}}^2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \widetilde{m}_{\overline{P}}^2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array}$ $Q_{B,C}$ $\widetilde{m}_P^2 \widetilde{m}_P^2 \widetilde{m}_P^2$ $\widetilde{m}_P^2 \widetilde{m}_P^2 \widetilde{m}_P^2$ $\underline{\quad \quad }^{u_{A}^{c}}$ $\begin{array}{c} \widetilde{m}_{\overline{P}_2}^2 \\ \widetilde{m}_{\overline{P}_2}^2 \end{array}$ $\widetilde{m}_{\overline{P}_{1}}^{2}\left(\underbrace{u_{B,C}^{c}}_{\widetilde{P}_{1}}\right)$ $\widetilde{m}_{\overline{P}}^2$

Soft SUSY Breaking Terms

$$\begin{split} \widetilde{m}_{Q_{B,C}}^2 &= \widetilde{m}_P^2 + \widetilde{m}_{\overline{P}}^2 - \widetilde{m}_P^2 - \widetilde{m}_{\overline{P}}^2 = 0, \\ \widetilde{m}_{u_{B,C}}^2 &= \widetilde{m}_P^2 + \widetilde{m}_{\overline{P}_1}^2 - \widetilde{m}_P^2 - \frac{2}{3}\widetilde{m}_{\overline{P}_1}^2 - \frac{1}{3}\widetilde{m}_{\overline{P}_2}^2 = \frac{\widetilde{m}_{\overline{P}_1}^2 - \widetilde{m}_{\overline{P}_2}^2}{3}, \\ \widetilde{m}_{Q_A,u_A^c}^2 &= \widetilde{m}_P^2 + \widetilde{m}_{\overline{P}_2}^2 - \widetilde{m}_P^2 - \frac{2}{3}\widetilde{m}_{\overline{P}_2}^2 - \frac{1}{3}\widetilde{m}_{\overline{P}_1}^2 = \frac{\widetilde{m}_{\overline{P}_1}^2 - \widetilde{m}_{\overline{P}_1}^2}{3} = -\widetilde{m}_{u_{B,C}}^2 \end{split}$$

Hidden Glueballs

- ► $\Lambda_{B/C} \gtrsim 5 \text{ GeV} \Rightarrow \text{lightest hidden glueball (0⁺⁺) mass } \gtrsim 35 \text{ GeV}.$
- 0⁺⁺ hidden glueball's decay is similar to fraternal twin Higgs (FTH) or Folded SUSY, via mixing with the SM Higgs.

Long-Lived Compared to Similar Models

$$c\tau_{0^{++}} \sim 1.2 \,\mathrm{m} \left(\frac{5 \,\mathrm{GeV}}{\Lambda_{\mathrm{QCD}_{B,C}}}\right)^7 \left(\frac{\omega}{500 \,\mathrm{GeV}}\right)^4 \left(\frac{\Delta}{300 \,\mathrm{GeV}}\right)^4 \left(\frac{100 \,\mathrm{GeV}}{\delta m}\right)^4.$$
(3)

Suppressed $h \rightarrow$ hidden glueball branching ratio.

Higgs Potential

$$V_{h^{2}} = -\frac{N_{c}y_{t}^{2}h^{2}}{8\pi^{2}} \left[-\left(M^{2} - \Delta^{2}\right)\ln\left(1 - \frac{\Delta^{2}}{M^{2}}\right) - \frac{\Delta^{4}}{\omega^{2} - \Delta^{2}}\ln\frac{M^{2}}{\Delta^{2}} + \frac{\omega^{4}(M^{2} - \Delta^{2})}{(M^{2} - \omega^{2})(\omega^{2} - \Delta^{2})}\ln\frac{M^{2}}{\omega^{2}} \right]$$

$$\sim \omega^2 \ln M^2 / (16\pi^2)$$

when $\Delta \rightarrow 0$

$$\approx - \frac{N_c y_t^2 h^2}{8\pi^2} \left[\frac{\omega^4}{\omega^2 - \Delta^2} \ln \frac{M^2}{\omega^2} - \frac{\Delta^4}{\omega^2 - \Delta^2} \ln \frac{M^2}{\Delta^2} + \Delta^2 \right] + O\left(M^{-2}\right)$$

$$V_{h^4} = \frac{N_c y_t^4 h^4}{16\pi^2} \left\{ \frac{3}{2} + \frac{2\omega^2 (M^2 - \Delta^2) (M^2 \Delta^2 - \omega^4)}{(M^2 - \omega^2)^2 (\omega^2 - \Delta^2)^2} + \ln \frac{M^2}{y_t^2 h^2} + \ln \left(1 - \frac{\Delta^2}{M^2}\right) + \frac{\Delta^4 (\Delta^2 - 3\omega^2)}{(\omega^2 - \Delta^2)^3} \ln \frac{M^2}{\Delta^2} - \left[\frac{\omega^4 (\omega^2 - 3M^2)}{(M^2 - \omega^2)^3} + \frac{\omega^4 (\omega^2 - 3\Delta^2)}{(\omega^2 - \Delta^2)^3}\right] \ln \frac{M^2}{\omega^2} \right\}$$

Hidden Quark Mixing Angles

Fermion mass matrix: $-\begin{pmatrix} u'_B & t_B \end{pmatrix} \mathcal{M} \begin{pmatrix} u^c_B \\ t'^c_B \end{pmatrix} \qquad \mathcal{M} = \begin{pmatrix} \omega & 0 \\ y_t h & M \end{pmatrix}$ $\omega - M$ mixing

$$\begin{pmatrix} u'_B \\ t_B \end{pmatrix} \to R(\theta_L) \begin{pmatrix} U'_B \\ T_B \end{pmatrix}, \qquad \begin{pmatrix} u^c_B \\ t'^c_B \end{pmatrix} \to R(\theta_R) \begin{pmatrix} U^c_B \\ T'^c_B \end{pmatrix}, \qquad R(\theta) \equiv \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

Left/ Right handed components gets very different mixing angle:

$$\sin \theta_L = \frac{m_{\psi}}{M} \sin \theta_R \simeq \frac{\omega y_t h}{M^2 + y_t^2 h^2}, \qquad \sin \theta_R \simeq \frac{y_t h}{\sqrt{M^2 + y_t^2 h^2}}$$

Both L/R component get EW interaction via mixing with M states

Will introduce substantial difference between h and Z decay

Exotic BR of h

.The scalar higgs couple to LR, therefore decay suppressed by the small $\sin\theta_L$:

$$\frac{y_t}{\sqrt{2}} \sin \theta_L \cos \theta_R h \,\overline{\psi}_B \psi_B \simeq \frac{y_t}{\sqrt{2}} \frac{\Lambda m_t M}{(M^2 + m_t^2)^{3/2}} h \,\overline{\psi}_B \psi_B$$

 Relatively unimportant due to the suppression and rate (~10³ times more Z than h @14TeV)

$$\Gamma(h \to \overline{\psi}_B \psi_B) \simeq \frac{N_d y_t^2}{16\pi} \frac{\omega^2 m_t^2 M^2}{(M^2 + m_t^2)^3} m_h \left(1 - \frac{4m_\psi^2}{m_h^2}\right)^{3/2}.$$

$$\operatorname{BR}(h \to \overline{\psi}_{B,C} \psi_{B,C}) \approx 1.6 \times 10^{-6} \left(\frac{\omega}{0.5 \,\mathrm{GeV}}\right)^2 \left(\frac{2 \,\mathrm{TeV}}{M}\right)^4.$$

$$\operatorname{BR}(h \to g_{B,C} g_{B,C}) \approx 1.8 \times 10^{-4} \left(\frac{\alpha_d}{0.17}\right)^2 \left(\frac{2 \,\mathrm{TeV}}{M}\right)^4 \left(\frac{c}{4}\right)^2.$$

_ _ _

$$\begin{split} \Gamma(\hat{V} \to f\bar{f}) &= N_d N_c^f \frac{\pi \alpha_Z^2}{12} \frac{m_t^4}{(M^2 + m_t^2)^2} \frac{m_{\tilde{V}}^2 |\psi(0)|^2}{m_Z^4} \frac{\left(1 - \frac{4m_f^2}{m_{\tilde{V}}^2}\right)^{-1/2}}{\left(1 - \frac{m_{\tilde{V}}^2}{m_Z^2}\right)^2} \left[v_f^2 \left(1 + \frac{2m_f^2}{m_{\tilde{V}}^2}\right) + a_f^2 \left(1 - \frac{4m_f^2}{m_{\tilde{V}}^2}\right)\right] \\ &\quad c\tau_{\tilde{V}} \sim 0.02 \text{ mm} \left(\frac{10 \text{ GeV}}{m_{\tilde{V}}}\right)^2 \left(\frac{5 \text{ GeV}}{\Lambda}\right)^3 \left(\frac{M}{2 \text{ TeV}}\right)^4 \\ \Gamma(\hat{P} \to f\bar{f}) &= N_d N_c(f) 2\pi \alpha_Z^2 \frac{m_t^4}{(M^2 + m_t^2)^2} a_f^2 \frac{\mu_{\psi}^2 m_f^2}{m_Z^4} \frac{|\psi(0)|^2}{m_{\tilde{P}}^2} \left(1 - \frac{4m_f^2}{m_{\tilde{P}}^2}\right)^{1/2} \\ &\quad c\tau_{\tilde{P}} \sim 0.3 \text{ mm} \left(\frac{m_{\tilde{P}}}{10 \text{ GeV}}\right)^2 \left(\frac{5 \text{ GeV}}{\Lambda}\right)^5 \left(\frac{\Lambda}{\mu_{\psi}}\right)^2 \left(\frac{M}{2 \text{ TeV}}\right)^4 \\ \Gamma(\hat{S} \to \hat{V} f\bar{f}) \sim \frac{\alpha_Z^2 \sin^4 \theta_R N_f}{16\pi} \frac{k^7}{m_Z^4} |\varepsilon_{if}|^2 \\ &\quad c\tau_{\tilde{S}} \sim 0.1 \text{ mm} \left(\frac{5 \text{ GeV}}{\Lambda}\right)^5 \left(\frac{\Lambda}{k}\right)^7 \left(\frac{M}{2 \text{ TeV}}\right)^4 \end{split}$$

2 Body Limit

Leading BR: $Z \rightarrow PS$: $\hat{g}_Z Z_\mu (\hat{S} \partial^\mu \hat{P} - \hat{P} \partial^\mu \hat{S})$

Subleading BR: Z \rightarrow VS, VP, VV $\frac{c_{\hat{V}\hat{S}(\hat{P})}\hat{g}_{Z}\mu_{\psi} Z_{\mu}\hat{V}^{\mu}\hat{S}(\hat{P})}{c_{\hat{V}\hat{V}}\hat{g}_{Z}(m_{\hat{V}}^{2}/m_{Z}^{2}) \epsilon^{\mu\nu\rho\sigma}Z_{\mu}\hat{V}_{\nu}\partial_{\rho}\hat{V}_{\sigma}}$

Suppressed by ~ meson mass/m_z

Define
$$f_{XY} = BR(Z/h \rightarrow XY)/BR(Z/h \rightarrow \psi\psi) < 1$$

See also : [J. Liu, L.-T. Wang, X.-P. Wang, and W. Xue, 1712.07237]

.Since we focus mostly on LHC, need leptons (from V decay) as the trigger.

Correspond to 35.9, 300, 3000 fb⁻¹

Prompt Limit – $Z \rightarrow 4$ lep+(X)

Prospects @ Z Factories

Z factories can provide 10^9 (Giga Z) – 10^{12} (Tera Z) clean Z at Z pole: Can probe exotic BR(Z) down to O(10^{-8}) (Giga Z) and O(10^{-10}) (Tera Z)

For Tera Z: Need to consider displaced effects

Manybody Limit – Emerging Jets

Emerging Jet Discrimination

1803.03651 1905.03772 20xy.ijklm

Off-Topic Thoughts About Exotic Bound States

Spectrum of the revised TT model:

Time Resolution: A Complementary?

Interesting topic for the future and may work as extra discriminator for emerging jets.

[J. Liu, Z. Liu and L.Wang, 1805.05957]

Due to SM backgrounds and time resolution, a $\Delta t \approx O(1)$ ns is required.

⇒ A not very boosted hidden meson (γ ~2-3) shall travel O(100) cm before its decay.

Exotic Bound States

Effective Lightest SUSY Particle (ELSP)

Annihilate to light hidden mesons \rightarrow SM efficiently. Seems OK as relic density much smaller than O(10⁻²)

Collider Pheno: Open question

$$\begin{aligned} \frac{dY_{h}}{dx} &= \frac{-1}{3H(x)}\frac{ds}{dx}\bigg[\left\langle\sigma_{+2h}v\right\rangle Y_{l}^{2} - \left\langle\sigma_{-2h}v\right\rangle Y_{h}^{2}\right.\\ &\quad \left.-\left\langle\sigma_{-h}v\right\rangle Y_{h}Y_{l} + \left\langle\sigma_{+h}v\right\rangle Y_{l}^{2}\right.\\ &\quad \left.-\left\langle\overline{\sigma}_{-h}v\right\rangle Y_{h}Y_{l} + \left\langle\overline{\sigma}_{+h}v\right\rangle Y_{l}^{2}\right.\\ &\quad \left.-\frac{\left\langle\Gamma_{\phi_{h}}\rightarrow\mathsf{SM}\right\rangle_{\widehat{T}}}{s}Y_{h} + \frac{\left\langle\Gamma_{\phi_{h}}\rightarrow\mathsf{SM}\right\rangle_{T}}{s}Y_{h}^{\mathsf{eq}}(T)\bigg],\\ &\quad \left.\frac{dY_{l}}{dx}\right] &= \frac{-1}{3H(x)}\frac{ds}{dx}\bigg[\left\langle\sigma_{-2h}v\right\rangle Y_{h}^{2} - \left\langle\sigma_{+2h}v\right\rangle Y_{l}^{2}\right.\\ &\quad \left.+\left\langle\sigma_{-h}v\right\rangle Y_{h}Y_{l} - \left\langle\sigma_{+h}v\right\rangle Y_{l}^{2}\bigg].\end{aligned}$$

Thermal History

Sensitive to:

Decay length Γ
 (kinematic decoupling time)

 $\cdot \omega_d - \eta_d$ mass difference Δm (when freeze out happens).

The analytical form is not always precise

Thermal History

BBN Constraint

Taken from [1709.01211]