Power corrections for slicing methods in QCD

Marco Rocco

Università di Milano-Bicocca

Milan Christmas Meeting 2019
Milano, December 19th, 2019
based on :: arXiv:1906.09044, with L. Cieri and C. Oleari

Outline

Motivation

Inclusive PCs for colour-singlet production
Framework
Method \& Results
Numerical results

Conclusions

Precision physics @ LHC

$\triangleright \triangleright$ LHC is entering a high-precision phase
It is mandatory a deep understanding of the underlying theory, i.e. to improve the prediction accuracy by at least an order of magnitude:

$$
\text { [QCD] NLO } \rightarrow \text { NNLO (or even } \mathrm{N}^{3} \mathrm{LO} \text {) }
$$

\triangleright evaluation of multi-loop amplitudes, with complexity growing with the n. of scales involved \rightarrow progresses in massive and many-legs processes
\triangleright automatization of infrared singularities cancellation: real and virtual amplitudes combine for IR-safe observables to give a finite result (KLN)

- local subtraction \rightarrow more complex but exact (ex. antennae, stripper, nested s-c, colorful, P2B, Torino, ...)
- slicing methods \rightarrow simpler but approximate, need to check cutoff independence

Slicing methods

Slicing methods introduce a resolution parameter, $\lambda_{\text {cut }}$, separating the integration into two regions:

- below $\lambda_{\text {cut }}$: obtained as an expansion of a resummed formula
- above $\lambda_{\text {cut }}$: obtained by a MC integration (no singularities above the cut)

$$
\sigma^{(\mathrm{N}) \mathrm{NLO}}=\int_{0}^{\lambda_{\mathrm{cut}}} \mathrm{~d} \lambda \frac{\mathrm{~d} \sigma^{(\mathrm{N}) \mathrm{NLO}}}{\mathrm{~d} \lambda}+\int_{\lambda_{\mathrm{cut}}}^{\lambda_{\max }} \mathrm{d} \lambda \frac{\mathrm{~d} \sigma^{(\mathrm{N}) \mathrm{NLO}}}{\mathrm{~d} \lambda}
$$

Ex.

- \mathbf{q}_{T}-subtraction :: $\lambda=q_{\mathrm{T}}$, the transverse momentum of a particle set [Catani, Grazzini; Bozzi et al.]
- N-jettiness :: $\lambda=\mathcal{T}_{N}$, an event-shape variable describing final-state jets [Boughezal et al; Gaunt et al.]

Slicing methods

Slicing methods introduce a resolution parameter, $\lambda_{\text {cut }}$, separating the integration into two regions:

- below $\lambda_{\text {cut }}$: obtained as an expansion of a resummed formula
- above $\lambda_{\text {cut }}$: obtained by a MC integration (no singularities above the cut)

$$
\sigma^{(\mathrm{N}) \mathrm{NLO}}=\int_{0}^{\lambda_{\mathrm{cut}}} \mathrm{~d} \lambda \frac{\mathrm{~d} \sigma^{(\mathrm{N}) \mathrm{NLO}}}{\mathrm{~d} \lambda}+\int_{\lambda_{\mathrm{cut}}}^{\lambda_{\max }} \mathrm{d} \lambda \frac{\mathrm{~d} \sigma^{(\mathrm{N}) \mathrm{NLO}}}{\mathrm{~d} \lambda}
$$

Ex.

- \mathbf{q}_{T}-subtraction :: $\lambda=q_{\mathrm{T}}$, the transverse momentum of a particle set [Catani, Grazzini; Bozzi et al.]
- N-jettiness :: $\lambda=\mathcal{T}_{N}$, an event-shape variable describing final-state jets [Boughezal et al; Gaunt et al.]

Slicing methods

Slicing methods introduce a resolution parameter, $\lambda_{\text {cut }}$, separating the integration into two regions:

- below $\lambda_{\text {cut }}$: obtained as an expansion of a resummed formula
- above $\lambda_{\text {cut }}$: obtained by a MC integration (no singularities above the cut)

$$
\sigma^{(\mathrm{N}) \mathrm{NLO}}=\int_{0}^{\lambda_{\text {cut }}} \mathrm{d} \lambda \frac{\mathrm{~d} \sigma^{(\mathrm{N}) \mathrm{NLO}}}{\mathrm{~d} \lambda}+\int_{\lambda_{\text {cut }}}^{\lambda_{\max }} \mathrm{d} \lambda \frac{\mathrm{~d} \sigma^{(\mathrm{N}) \mathrm{NLO}}}{\mathrm{~d} \lambda}
$$

Ex.

- \mathbf{q}_{T}-subtraction :: $\lambda=q_{\mathrm{T}}$, the transverse momentum of a particle set [Catani, Grazzini; Bozzi et al.]
- N-jettiness :: $\lambda=\mathcal{T}_{N}$, an event-shape variable describing final-state jets [Boughezal et al; Gaunt et al.]

Power corrections (PCs)

$$
\sigma^{(\mathrm{N}) \mathrm{NLO}}=\int_{0}^{\lambda_{\mathrm{cut}}} \mathrm{~d} \lambda \frac{\mathrm{~d} \sigma^{(\mathrm{N}) \mathrm{NLO}}}{\mathrm{~d} \lambda}+\int_{\lambda_{\mathrm{cut}}}^{\lambda_{\max }} \mathrm{d} \lambda \frac{\mathrm{~d} \sigma^{(\mathrm{N}) \mathrm{NLO}}}{\mathrm{~d} \lambda}
$$

- theory side :: PCs, i.e. new non-trivial terms, increase the understanding of the perturbative behaviour of QCD cross sections
- practical side :: PCs make the numerical implementation of the subtraction more robust, weakening the dependence on the cutoff
- $\lambda_{\text {cut }}$ too small \rightarrow integration difficulties above the cutoff; larger $\lambda_{\text {cut }} \rightarrow$ preferable, if we control PCs in $\lambda_{\text {cut }}$
- PCs are more relevant as the perturbative order increases \rightarrow however, we begin with the NLO XS

Some references for Next-to-Leading PCs
\triangleright Tackmann et al., Boughezal, Isgrò, Petriello within SCET (2017-) \rightarrow Andrea's talk
\triangleright Laenen et al., within treshold resummation (2015-)

Framework

Color-singlet (F) production @ NLO in α_{S}

$$
\text { Born }:: \quad p+p \rightarrow F\left(Q^{2}\right)+X
$$

- $p+p \rightarrow Z+j$

$$
\begin{aligned}
& \triangleright q(\bar{q})+g \rightarrow Z+q(\bar{q}) \\
& \triangleright q+\bar{q} \rightarrow Z+g \quad \text { "diagonal channel" }
\end{aligned}
$$

$-p+p \rightarrow H+j \quad\left(m_{\mathrm{top}} \rightarrow \infty\right)$

$$
\begin{aligned}
& \triangleright q(\bar{q})+g \rightarrow H+q(\bar{q}) \\
& \triangleright g+g \rightarrow H+g \quad \text { "diagonal channel" } \\
& \triangleright q+\bar{q} \rightarrow H+g
\end{aligned}
$$

Method

In order to extract the PCs, we study the behaviour of the real contribution at small $\lambda \equiv q_{\text {T }}$ of F, first at parton level: [$a, b \equiv$ initial-state partons]

$$
\hat{\sigma}_{a b}^{<}(z) \equiv \int_{0}^{\left(q_{\mathrm{T}}^{\text {cut }}\right)^{2}} d q_{\mathrm{T}}^{2} \frac{d \hat{\sigma}_{a b}\left(q_{\mathrm{T}}, z\right)}{d q_{\mathrm{T}}^{2}}, \quad z \equiv \frac{Q^{2}}{\hat{s}}
$$

Since we know the total cross section, we may refer to the above $-q_{T}^{\text {cut }}$ region

$$
\hat{\sigma}_{a b}^{>}(z)=\int_{\left(q_{\mathrm{T}}^{\text {cut }}\right)^{2}}^{\left(q_{\mathrm{T}}^{\max }\right)^{2}} d q_{\mathrm{T}}^{2} \frac{d \hat{\sigma}_{a b}\left(q_{\mathrm{T}}, z\right)}{d q_{\mathrm{T}}^{2}}
$$

\rightarrow two kinds of terms:

- singular (logarithmically-enhanced) terms, known for a while
- vanishing, i.e. the power corrections, whose general structure is unknown and which we have analytically computed as a series in $a \equiv \frac{\left(q_{\mathrm{T}}^{\text {cut }}\right)^{2}}{Q^{2}}$

Method

At hadron level, the reality of the parton level XS's restricts the z-integration

$$
\begin{aligned}
\sigma_{a b}^{<} & =\tau \int_{\tau}^{1-f(a)} \frac{d z}{z} \mathcal{L}_{a b}\left(\frac{\tau}{z}\right) \frac{1}{z} \hat{\sigma}_{a b}^{<}(z) \\
& \equiv \tau \int_{\tau}^{1} \frac{d z}{z} \mathcal{L}_{a b}\left(\frac{\tau}{z}\right) \hat{\sigma}^{(0)} \hat{R}_{a b}(z), \quad \tau \equiv \frac{Q^{2}}{S}
\end{aligned}
$$

Here we are interested in

$$
\hat{R}_{a b}(z)=\delta_{\mathrm{B}} \delta(1-z)+\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{n} \hat{R}_{a b}^{(n)}(z)
$$

whose known structure at first order in α_{S} is

$$
\hat{R}_{a b}^{(\mathbf{1})}(z)=\log ^{2}(a) \hat{R}_{a b}^{(1,2,0)}(z)+\log (a) \hat{R}_{a b}^{(1,1,0)}(z)+\hat{R}_{a b}^{(1,0,0)}(z)+\mathcal{O}\left(a^{\frac{1}{2}} \log a\right)
$$

Method

At hadron level, the reality of the parton level XS's restricts the z-integration

$$
\begin{aligned}
\sigma_{a b}^{<} & =\tau \int_{\tau}^{1-f(a)} \frac{d z}{z} \mathcal{L}_{a b}\left(\frac{\tau}{z}\right) \frac{1}{z} \hat{\sigma}_{a b}^{<}(z) \\
& \equiv \tau \int_{\tau}^{1} \frac{d z}{z} \mathcal{L}_{a b}\left(\frac{\tau}{z}\right) \hat{\sigma}^{(0)} \hat{R}_{a b}(z), \quad \tau \equiv \frac{Q^{2}}{S}
\end{aligned}
$$

Here we are interested in

$$
\hat{R}_{a b}(z)=\delta_{\mathrm{B}} \delta(1-z)+\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{n} \hat{R}_{a b}^{(n)}(z)
$$

whose known structure at first order in α_{S} is

$$
\hat{R}_{a b}^{(\mathbf{1})}(z)=\log ^{2}(a) \hat{R}_{a b}^{(1,2,0)}(z)+\log (a) \hat{R}_{a b}^{(1,1,0)}(z)+\hat{R}_{a b}^{(1,0,0)}(z)+\mathcal{O}\left(a^{\frac{1}{2}} \log a\right)
$$

Method

At hadron level, the reality of the parton level XS's restricts the z-integration

$$
\begin{aligned}
\sigma_{a b}^{<} & =\tau \int_{\tau}^{1-f(a)} \frac{d z}{z} \mathcal{L}_{a b}\left(\frac{\tau}{z}\right) \frac{1}{z} \hat{\sigma}_{a b}^{<}(z) \\
& \equiv \tau \int_{\tau}^{1} \frac{d z}{z} \mathcal{L}_{a b}\left(\frac{\tau}{z}\right) \hat{\sigma}^{(0)} \hat{R}_{a b}(z), \quad \tau \equiv \frac{Q^{2}}{S}
\end{aligned}
$$

Here we are interested in

$$
\hat{R}_{a b}(z)=\delta_{\mathrm{B}} \delta(1-z)+\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{n} \hat{R}_{a b}^{(n)}(z)
$$

whose known structure at first order in α_{S} is

$$
\hat{R}_{a b}^{(1)}(z)=\log ^{2}(a) \hat{R}_{a b}^{(1,2,0)}(z)+\log (a) \hat{R}_{a b}^{(1,1,0)}(z)+\hat{R}_{a b}^{(1,0,0)}(z)+\mathcal{O}\left(a^{\frac{1}{2}} \log a\right)
$$

** the same method was used by Catani et al., at leading power in a, to extract
\rightarrow soft constant of the q_{T}-subtraction hard function
\rightarrow second-order collinear coefficient functions for q_{T}-resummation [see 1106.4652, 1209.0158]

Method \& Results

At hadron level, the reality of the parton level XS's restricts the z-integration

$$
\begin{aligned}
\sigma_{a b}^{>(\mathbf{1})} & =\tau \int_{\tau}^{1-f(a)} \frac{d z}{z} \mathcal{L}_{a b}\left(\frac{\tau}{z}\right) \frac{1}{z} \hat{\sigma}_{a b}^{>(\mathbf{1})}(z) \\
& \equiv \tau \int_{\tau}^{1} \frac{d z}{z} \mathcal{L}_{a b}\left(\frac{\tau}{z}\right) \hat{\sigma}^{(0)} \hat{G}_{a b}^{(\mathbf{1})}(z)
\end{aligned}
$$

which gives

$$
\begin{aligned}
\hat{G}_{a b}^{(\mathbf{1})}(z)= & \log ^{2}(a) \hat{G}_{a b}^{(1,2,0)}(z)+\log (a) \hat{G}_{a b}^{(1,1,0)}(z)+\hat{G}_{a b}^{(1,0,0)}(z) \\
& +a \log (a) \hat{G}_{a b}^{(1,1,2)}(z)+a \hat{G}_{a b}^{(1,0,2)}(z) \\
& +a^{2} \log (a) \hat{G}_{a b}^{(1,1,4)}(z)+a^{2} \hat{G}_{a b}^{(\mathbf{1 , 0 , 4})}(z)+\mathcal{O}\left(a^{\frac{5}{2}} \log (a)\right)
\end{aligned}
$$

\triangleright no odd-power corrections of \sqrt{a}
\triangleright NLT and N^{2} LT terms are at most linearly dependent on $\log (a)$

Comments

\triangleright Our integration method can be extended to any order of PCs in a

- higher-order plus distributions
- at numerical level Chebyshev polynomials for calculating $\frac{\partial \mathcal{L}_{a b}}{\partial z}$
\triangleright Application to the q_{T}-subtraction method
- the method suffers from a residual $q_{T}^{\text {cut }}$-dependence
- our PCs can be directly used for the counter-term
- the method uses $\hat{R}_{a b}^{(1)}(z)=-\hat{G}_{a b}^{(1)}(z)$, plus Born-like terms
\triangleright Contribution from the soft expansion
- the (universal) leading soft term leads to known leading logs
- a claim about the sub-leading soft terms and the sub-leading logarithmic PCs does not hold order-by-order in the final-state parton energy

Numerical results :: pp $\rightarrow Z+j$ @ 13 TeV

Numerical results :: pp $\rightarrow Z+j$ @ 13 TeV

Numerical results :: pp $\rightarrow Z+j$ @ 13 TeV

Numerical results :: pp $\rightarrow H+j$ @ 13 TeV

Numerical results :: pp $\rightarrow H+j$ @ 13 TeV

Numerical results :: pp $\rightarrow H+j$ @ 13 TeV

Conclusions

- we reproduced the known logarithms from collinear and soft regions of the PS, along with vanishing contributions, i.e. the new PCs in $q_{\mathrm{T}}^{\text {cut }}$
- we noticed the absence of odd-powers in $q_{T}^{\text {cut }}$, claiming that this is likely to be true at all orders in $q_{\mathrm{T}}^{\text {cut }}$, while false for more exclusive quantities
- we kept track of the universal part of the result, connected with the IR singular behaviour, also studying the higher-order soft expansion which does not yield a universal interpretation
- numerically speaking, H production shows a larger sensitivity on the cutoff w.r.t. Z production, although for the most part of universal origin
- our result may be crucial in the understanding of the q_{T}-resummation structure at subleading orders

Conclusions

- we reproduced the known logarithms from collinear and soft regions of the PS, along with vanishing contributions, i.e. the new PCs in $q_{T}^{\text {cut }}$
- we noticed the absence of odd-powers in $q_{T}^{\text {cut }}$, claiming that this is likely to be true at all orders in $q_{\mathrm{T}}^{\text {cut }}$, while false for more exclusive quantities
- we kept track of the universal part of the result, connected with the IR singular behaviour, also studying the higher-order soft expansion which does not yield a universal interpretation
- numerically speaking, H production shows a larger sensitivity on the cutoff w.r.t. Z production, although for the most part of universal origin
- our result may be crucial in the understanding of the q_{T}-resummation structure at subleading orders

Some ongoing and future work
\triangleright NLO PCs for $p p \rightarrow(H \rightarrow 2 \gamma)+j$, with cuts on $p_{\mathrm{T}}(\gamma)$
\triangleright NNLO inclusive PCs for color-singlet production
© useful for a would-be local version of the q_{T}-subtraction method
(2) much more involved than second-order collinear functions

Numerical results :: pp $\rightarrow Z+j$ @ 13 TeV

Numerical results :: pp $\rightarrow Z+j$ @ 13 TeV

$$
q+\bar{q} \rightarrow Z+g
$$

Numerical results :: pp $\rightarrow H+j$ @ 13 TeV

$$
q(\bar{q})+g \rightarrow H+q(\bar{q})
$$

Numerical results :: pp $\rightarrow H+j$ @ 13 TeV

$$
g+g \rightarrow H+g
$$

