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Precision physics @ LHC

.. LHC is entering a high-precision phase

It is mandatory a deep understanding of the underlying theory, i.e. to improve
the prediction accuracy by at least an order of magnitude:

[QCD] NLO → NNLO (or even N3LO)

. evaluation of multi-loop amplitudes, with complexity growing with the n.
of scales involved → progresses in massive and many-legs processes

. automatization of infrared singularities cancellation: real and virtual
amplitudes combine for IR-safe observables to give a finite result (KLN)

- local subtraction → more complex but exact
(ex. antennae, stripper, nested s-c, colorful, P2B, Torino, . . .)

- slicing methods → simpler but approximate, need to check
cutoff independence
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Slicing methods

Slicing methods introduce a resolution parameter, λcut, separating the
integration into two regions:

I below λcut: obtained as an expansion of a resummed formula
I above λcut: obtained by a MC integration (no singularities above the cut)

σ(N)NLO =

∫ λcut

0
dλ

dσ(N)NLO

dλ
+

∫ λmax

λcut

dλ
dσ(N)NLO

dλ

Ex.

I qT-subtraction :: λ = qT, the transverse momentum of a particle set
[Catani, Grazzini; Bozzi et al. ]

I N-jettiness :: λ = TN , an event-shape variable describing final-state jets
[Boughezal et al; Gaunt et al. ]
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Power corrections (PCs)

σ(N)NLO =

∫ λcut

0
dλ

dσ(N)NLO

dλ
+

∫ λmax

λcut

dλ
dσ(N)NLO

dλ

I theory side :: PCs, i.e. new non-trivial terms, increase the understanding
of the perturbative behaviour of QCD cross sections

I practical side :: PCs make the numerical implementation of the
subtraction more robust, weakening the dependence on the cutoff

- λcut too small → integration difficulties above the cutoff;
larger λcut → preferable, if we control PCs in λcut

- PCs are more relevant as the perturbative order increases
→ however, we begin with the NLO XS

Some references for Next-to-Leading PCs

. Tackmann et al., Boughezal, Isgrò, Petriello within SCET (2017-)
→ Andrea’s talk

. Laenen et al., within treshold resummation (2015-)
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Framework

Color-singlet (F ) production @ NLO in αS

Born :: p + p → F
(
Q2) + X

I p + p → Z + j

. q (q̄) + g → Z + q (q̄)

. q + q̄ → Z + g “diagonal channel”

I p + p → H + j (mtop →∞)

. q (q̄) + g → H + q (q̄)

. g + g → H + g “diagonal channel”

. q + q̄ → H + g
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Method

In order to extract the PCs, we study the behaviour of the real contribution at
small λ ≡ qT of F , first at parton level: [a, b ≡ initial-state partons]

σ̂<
ab(z) ≡

∫ (qcut
T )2

0
dq2

T
d σ̂ab(qT, z)

dq2
T

, z ≡ Q2

ŝ

Since we know the total cross section, we may refer to the above-qcut
T region

σ̂>
ab(z) =

∫ (qmax
T )2

(qcut
T )2

dq2
T
d σ̂ab(qT, z)

dq2
T

→ two kinds of terms:

I singular (logarithmically-enhanced) terms, known for a while
I vanishing, i.e. the power corrections, whose general structure is unknown

and which we have analytically computed as a series in a ≡ (qcut
T )2

Q2
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Method

At hadron level, the reality of the parton level XS’s restricts the z-integration

σ<
ab = τ

∫ 1−f (a)

τ

dz

z
Lab

(τ
z

) 1
z
σ̂<
ab(z)

≡ τ

∫ 1

τ

dz

z
Lab

(τ
z

)
σ̂(0)R̂ab(z) , τ ≡ Q2

S

Here we are interested in

R̂ab(z) = δB δ(1− z) +
∞∑
n=1

(αS

2π

)n
R̂ (n)

ab (z)

whose known structure at first order in αS is

R̂ (1)
ab (z) = log2(a) R̂ (1,2,0)

ab (z) + log(a) R̂ (1,1,0)
ab (z) + R̂ (1,0,0)

ab (z) +O
(
a

1
2 log a

)
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** the same method was used by Catani et al., at leading power in a, to extract
→ soft constant of the qT-subtraction hard function
→ second-order collinear coefficient functions for qT-resummation

[see 1106.4652, 1209.0158]
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Method & Results

At hadron level, the reality of the parton level XS’s restricts the z-integration

σ>(1)
ab = τ

∫ 1−f (a)

τ

dz

z
Lab

(τ
z

) 1
z
σ̂>(1)
ab (z)

≡ τ

∫ 1

τ

dz

z
Lab

(τ
z

)
σ̂(0) Ĝ (1)

ab (z)

which gives

Ĝ (1)
ab (z) = log2(a) Ĝ (1,2,0)

ab (z) + log(a) Ĝ (1,1,0)
ab (z) + Ĝ (1,0,0)

ab (z)

+ a log(a) Ĝ (1,1,2)
ab (z) + a Ĝ (1,0,2)

ab (z)

+ a2 log(a) Ĝ (1,1,4)
ab (z) + a2 Ĝ (1,0,4)

ab (z) +O
(
a

5
2 log(a)

)
. no odd-power corrections of

√
a

. NLT and N2LT terms are at most linearly dependent on log(a)
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Comments

. Our integration method can be extended to any order of PCs in a

- higher-order plus distributions
- at numerical level Chebyshev polynomials for calculating ∂Lab

∂z

. Application to the qT-subtraction method

- the method suffers from a residual qcut
T -dependence

- our PCs can be directly used for the counter-term
- the method uses R̂ (1)

ab (z) = −Ĝ (1)
ab (z), plus Born-like terms

. Contribution from the soft expansion

- the (universal) leading soft term leads to known leading logs
- a claim about the sub-leading soft terms and the sub-leading
logarithmic PCs does not hold order-by-order in the final-state
parton energy
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Numerical results :: pp → Z + j @ 13 TeV
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Numerical results :: pp → H + j @ 13 TeV
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Numerical results :: pp → H + j @ 13 TeV
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Conclusions

I we reproduced the known logarithms from collinear and soft regions of
the PS, along with vanishing contributions, i.e. the new PCs in qcut

T

I we noticed the absence of odd-powers in qcut
T , claiming that this is likely

to be true at all orders in qcut
T , while false for more exclusive quantities

I we kept track of the universal part of the result, connected with the IR
singular behaviour, also studying the higher-order soft expansion which
does not yield a universal interpretation

I numerically speaking, H production shows a larger sensitivity on the
cutoff w.r.t. Z production, although for the most part of universal origin

I our result may be crucial in the understanding of the qT-resummation
structure at subleading orders
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Some ongoing and future work

. NLO PCs for pp → (H → 2γ) + j , with cuts on pT(γ)

. NNLO inclusive PCs for color-singlet production
, useful for a would-be local version of the qT-subtraction method
/ much more involved than second-order collinear functions



15/16

Numerical results :: pp → Z + j @ 13 TeV
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Numerical results :: pp → Z + j @ 13 TeV
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Numerical results :: pp → H + j @ 13 TeV

q (q̄) + g → H + q (q̄)
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Numerical results :: pp → H + j @ 13 TeV

g + g → H + g
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