The SM-EFT program: some recent developments

Ilaria Brivio

Institut für Theoretische Physik, Universität Heidelberg

An EFT for BSM searches: the SMEFT

fundamental assumptions:

• new physics nearly decoupled:
$$\Lambda \gg (v, E)$$

at the accessible scale: SM fields + symmetries

a Taylor expansion in canonical dimensions ($\delta = v/\Lambda$ or E/Λ):

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

 $\mathcal{L}_n = \sum_i C_i \mathcal{O}_i^{d=n}$ C_i free parameters (Wilson coefficients)

 \mathcal{O}_i invariant operators that form a complete, non redundant basis

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

X ³		$arphi^6 ext{ and } arphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X arphi$		$\psi^2 arphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu u} T^A d_r) \varphi G^A_{\mu u}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Ilaria Brivio (ITP)

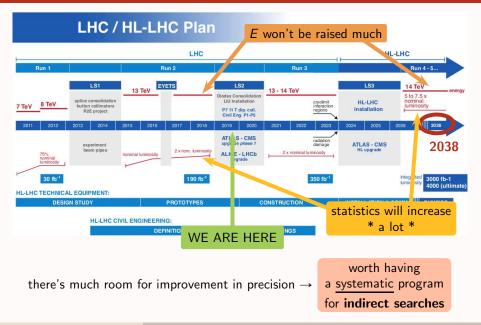
The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]$		$\left] \left[(q_s^{\gamma j})^T C l_t^k \right] \right.$	
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\overline{l}_{p}^{j}e_{r})arepsilon_{jk}(\overline{q}_{s}^{k}u_{t})$	Q_{duu}	$Q_{duu} \qquad \qquad \varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T \right]$		$\left[Cu_{r}^{\beta} ight]\left[(u_{s}^{\gamma})^{T}Ce_{t} ight]$	
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu u}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu u}u_{t})$					

Ilaria Brivio (ITP)

LHC / HL-LHC Plan


DEFINITION	EXCAVATION / BUILDINGS
------------	------------------------

LHC / HL-LHC Plan

full QFTs with their own regularization/renormalization schemes not just anomalous couplings!

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- [^(L) calculations are done **order by order in** δ = (E/Λ)→ rationale for expected size of contributions: power counting → systematically improvable

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- Allow compute matrix elements without knowing the UV
 → only input: low E fields & symmetries
 → works even if the UV is non-perturbative
 - e.g. chiral perturbation theory: $\pi-\pi$ scattering computed in 1966

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- iii allow compute matrix elements without knowing the UV
 → only input: low E fields & symmetries
 → works even if the UV is non-perturbative
 e.g. chiral perturbation theory: π − π scattering computed in 1966
- **model independent**, within low-energy assumption

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- illow compute matrix elements without knowing the UV
 → only input: low E fields & symmetries
 → works even if the UV is non-perturbative
 e.g. chiral perturbation theory: π − π scattering computed in 1966
- **model independent**, within low-energy assumption

systematic classification of **all** effects compatible with low-E assumptions

r a

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- illow compute matrix elements without knowing the UV
 → only input: low E fields & symmetries
 → works even if the UV is non-perturbative
 e.g. chiral perturbation theory: π − π scattering computed in 1966
- **model independent**, within low-energy assumption

systematic classification of all effects compatible with low-E assumptions

i a universal language for interpretation of measurements

Ilaria Brivio (ITP)

The SMEFT program: some recent developments

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda} \mathcal{L}_5 + rac{1}{\Lambda^2} \mathcal{L}_6 + rac{1}{\Lambda^3} \mathcal{L}_7 + rac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

$$\begin{array}{cccc} \text{B cons. } \mathsf{N}_{\mathsf{f}} = 1 \rightarrow & 2 & 76 & 22 & 895 \\ \mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots \\ \mathsf{N}_{\mathsf{f}} = 3 \rightarrow & 12 & 2499 & 948 & 36971 \\ \# \text{ of parameters known for all orders} \end{array}$$

Lehman 1410.4193 Lehman,Martin 1510.00372 Henning,Lu,Melia,Murayama 1512.03433

Weinberg PRL43(1979)1566

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \frac{1}{\Lambda^{3}} \mathcal{L}_{7} + \frac{1}{\Lambda^{4}} \mathcal{L}_{8} + \dots$$
Leung, Love, Rao Z. Ph. C31(1986)433
Leung, Love, Rao Z. Ph. C31(1986)433
Leung, Love, Rao Z. Ph. C31(1986)433

- # of parameters known for all orders
- complete bases available for \mathcal{L}_5 , \mathcal{L}_6 , \mathcal{L}_7

Leung,Love,Rao Z.Ph.C31(1986)433 Buchmüller,Wyler Nucl.Phys.B268(1986)621 Grzadkowski et al 1008.4884

Lohmon 1410 4102

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

- # of parameters known for all orders
- complete bases available for \mathcal{L}_5 , \mathcal{L}_6 , \mathcal{L}_7
- efficient matching techniques developed: CDE/UOLEA

Henning, Lu, Murayama 1412.1837,1604,01019 del Aguila, Kunszt, Santiago 1602.00126 Drozd, Ellis, Quevillon, You 1512.03003 Ellis, Quevillon, You, Zhang 1604.02445,1706.07765 Fuentes-Martin, Portoles, Ruiz-Femenia 1607.02142 Zhang 1610.00710 (Krämer), Summ, Voigt 1806.05171, 1908.04798

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

- # of parameters known for all orders
- complete bases available for \mathcal{L}_5 , \mathcal{L}_6 , \mathcal{L}_7
- efficient matching techniques developed: CDE/UOLEA
- relation with the amplitude method

Shadmi,Weiss 1809.09644 Henning,Melia 1901.06747,1902.06754,1902.06747 Ma,Shu,Xiao 1902.06752 Durieux,Kitahara,Shadmi,Weiss, 1909.10551

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

- # of parameters known for all orders
- complete bases available for \mathcal{L}_5 , \mathcal{L}_6 , \mathcal{L}_7
- efficient matching techniques developed: CDE/UOLEA
- relation with the amplitude method

\mathcal{L}_6 : leading deviations from SM

complete RGE available

Alonso, Jenkins, Manohar, Trott 1308.2627,1310.4838,1312.2014 Grojean, Jenkins, Manohar, Trott 1301.2588 Alonso, Chang, Jenkins, Manohar, Shotwell 1405,0486 Ghezzi, Gomez-Ambrosio, Passarino, Uccirati 1505.03706

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

- # of parameters known for all orders
- complete bases available for \mathcal{L}_5 , \mathcal{L}_6 , \mathcal{L}_7
- efficient matching techniques developed: CDE/UOLEA
- relation with the amplitude method

\mathcal{L}_6 : leading deviations from SM

- complete RGE available
- 1-loop results available for select processes

Pruna, Signer 1408.3565 Hartmann, (Shepherd), Trott 1505.02646,1507.03568,1611.09879 Ghezzi, Gomez-Ambrosio, Passarino, Uccirati 1505.03706 (Cullen, Gauld), Pecjak, Scott 1512.02508,1904.06358 Dawson, Giardino 1801.01136,1807.11504,1808.05948,1909.02000 Deutschmann, Duhr, Maltoni, Vryonidou 1708.00460 Grazzini, Ilnicka, Spira 1806.08832 Boughezal, Chen, Petriello, Wiegand 1907.00997 Dedes, Paraskevas, Rosiek, Suxho, Trifyllis 1805.00302 . . .

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

- # of parameters known for all orders
- complete bases available for \mathcal{L}_5 , \mathcal{L}_6 , \mathcal{L}_7
- efficient matching techniques developed: CDE/UOLEA
- relation with the amplitude method

\mathcal{L}_6 : leading deviations from SM

- complete RGE available
- 1-loop results available for select processes
- formulation in R_{ξ} gauge, Ward identities

Dedes,Materkowska,Paraskevas,Rosiek,Suxho 1704.03888 Helset,Paraskevas,Trott 1803.08001 Corbett,Helset,Trott 1909.08470

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

- # of parameters known for all orders
- complete bases available for \mathcal{L}_5 , \mathcal{L}_6 , \mathcal{L}_7
- efficient matching techniques developed: CDE/UOLEA
- relation with the amplitude method

\mathcal{L}_6 : leading deviations from SM

- complete RGE available
- 1-loop results available for select processes
- formulation in R_{ξ} gauge, Ward identities
- matching to Low Energy EFT (below m_W)

Jenkins, Manohar, Stoffer 1709.04486 Dekens, Stoffer 1908.05295

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

- # of parameters known for all orders
- complete bases available for \mathcal{L}_5 , \mathcal{L}_6 , \mathcal{L}_7
- efficient matching techniques developed: CDE/UOLEA
- relation with the amplitude method

\mathcal{L}_6 : leading deviations from SM

- complete RGE available
- 1-loop results available for select processes
- formulation in R_{ξ} gauge, Ward identities
- matching to Low Energy EFT (below m_W)
- various tools available for numerical analysis SMEFT-Tools (1910.11003)
 [MC generation, analytic calculation, fitting, matching, RGE running...]

Depends

Depends on choices of low energy symmetries. e.g. flavor

Depends on choices of low energy symmetries. e.g. flavor

observables, including/excluding quadratic terms

Focusing on interference $\mathcal{A}_{SM}\mathcal{A}_6^*$ only

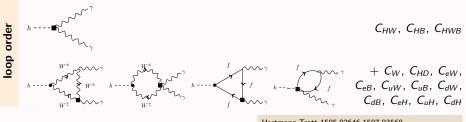
Selection due to SM kinematics / symmetries in the presence of:

- resonances in SM
- FCNCs op.
- dipole op. (interf. $\sim m_f$)

$$\psi^4$$
 operators generally **suppressed**
wrt. "pole operators" by
 $\left(\frac{\Gamma_B m_B}{v^2}\right)^n \sim \frac{1}{300} (Z,W)$
 $\frac{1}{10^6} (h)$

If quadratic terms $|A_6|^2$ are included, more operators contribute

Ilaria Brivio (ITP)


<u>۱</u>

The SMEFT program: some recent developments

Depends on choices of low energy symmetries. e.g. flavor

observables, including/excluding quadratic terms

EFT calculation accuracy

Hartmann.Trott 1505.02646.1507.03568 Ghezzi, Gomez-Ambrosio, Passarino, Uccirati 1505.03706 Dedes, Paraskevas, Rosiek, Suxho, Trifyllis 1805,00302

rdei + dimension 8 + . . .

Depends on choices of low energy symmetries. e.g. flavor

observables, including/excluding quadratic terms

EFT calculation accuracy

For reference:

		total $N_f = 3$	unsuppressed interf.*			
	general	2499	~ 46			
	MFV	~ 108	~ 30			
	$U(3)^{5}$	~ 70	~ 24			
B	Brivio, Jiang, Trott 1709.06492					

* parameters entering H/Z/W resonance-dominated processes, interference only.

Ilaria Brivio (ITP)

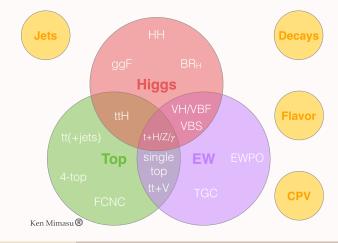
Depends on choices of low energy symmetries. e.g. flavor

observables, including/excluding quadratic terms

EFT calculation accuracy

For reference:

		total $N_f = 3$	unsuppressed interf.*	
	general	2499	~ 46	
	MFV	~ 108	~ 30	equires sts
	$U(3)^{5}$	~ 70	~ 24	requires global fits
Brivio, Jiang, Trott 1709.06492				


* parameters entering H/Z/W resonance-dominated processes, interference only.

Ilaria Brivio (ITP)

Global SMEFT analyses

ultimate goal: measure as many SMEFT parameters as possible fitting predictions that include <u>all</u> relevant terms

- individual processes necessarily have blind directions
- combination of different processes / sectors required

Example 1: Higgs and EW processes

- $U(3)^5$ flavor symmetry
- all relevant interactions included 23 relevant operators

tree-level, interference only

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

 $Q_{ee} = (\bar{e}\gamma^{\mu}e)(\bar{e}\gamma^{\mu}e)$ $Q_{le} = (\bar{l}\gamma^{\mu}l)(\bar{e}\gamma^{\mu}e)$ $\mathcal{Q}_{\mu} = (\bar{l}_{p} \gamma^{\mu} l_{p}) (\bar{l}_{r} \gamma^{\mu} l_{r})$

 $\mathcal{Q}_{Hbox} = (H^{\dagger}H) \square (H^{\dagger}H)$ $Q_{HG} = (H^{\dagger}H)G^{a}_{\mu\nu}G^{a\mu\nu}$ $Q_{HB} = (H^{\dagger}H)B_{\mu\nu}B^{\mu\nu}$ $\mathcal{Q}_{HW} = (H^{\dagger}H) \dot{W}^{i}_{\mu\nu} W^{i\mu\nu}$ $Q_{\mu H} = (H^{\dagger}H)(\bar{a}\tilde{H}u)$

 $Q_{dH} = (H^{\dagger}H)(\bar{q}Hd)$

 $Q_{eH} = (H^{\dagger}H)(\bar{I}He)$

 $\mathcal{Q}_{G} = \varepsilon_{abc} G^{a\nu}_{\mu} G^{b\rho}_{\nu} G^{c\mu}_{\rho}$

 $Q_{uG} = (\bar{q}\sigma^{\mu\nu}T^{a}Hu)G^{a}_{\mu\nu}$

also: Ellis, Murphy, Sanz, You 1803.03252

Bhabha scattering

Z,W couplings

$$\begin{aligned} \mathcal{Q}_{HI}^{(1)} &= (iH^{\dagger}\overset{\frown}{D}_{\mu}H)(\bar{l}\gamma^{\mu}l)\\ \mathcal{Q}_{He} &= (iH^{\dagger}\overset{\frown}{D}_{\mu}H)(\bar{e}\gamma^{\mu}e)\\ \mathcal{Q}_{Hq}^{(1)} &= (iH^{\dagger}\overset{\frown}{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)\\ \mathcal{Q}_{Hq}^{(3)} &= (iH^{\dagger}\overset{\frown}{D}_{\mu}^{i}H)(\bar{q}\sigma^{i}\gamma^{\mu}q)\\ \mathcal{Q}_{Hu} &= (iH^{\dagger}\overset{\frown}{D}_{\mu}H)(\bar{u}\gamma^{\mu}u)\\ \mathcal{Q}_{Hd} &= (iH^{\dagger}\overset{\frown}{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \end{aligned}$$

 $Q_{HD} = (D_{\mu}H^{\dagger}H)(H^{\dagger}D^{\mu}H)$ $Q_{HWB} = (H^{\dagger}\sigma^{i}H)W^{i}_{\mu\nu}B^{\mu\nu}$ $\mathcal{Q}_{HI}^{(3)} = (iH^{\dagger} \overleftarrow{D}_{\mu}^{i} H)(\overline{l}\sigma^{i}\gamma^{\mu} I)$ $\mathcal{Q}'_{\mu} = (\bar{l}_{p}\gamma^{\mu}l_{r})(\bar{l}_{r}\gamma^{\mu}l_{p})$

TGC

input quantities

$$\mathcal{Q}_W = arepsilon_{ijk} W^{i
u}_\mu W^{j
ho}_
u W^{k\mu}_
u$$

H processes

PRELIMINARY

Ilaria Brivio (ITP)

The SMEFT program: some recent developments

Higgs and EW fit: main features

- $U(3)^5$ flavor symmetry
- all relevant interactions included
- tree-level, interference only
- analytic predictions (as much as possible)
 - Better control on possible divergences / phase space integration

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

- Control on different diagram contributions (e.g. γ-mediated in h → 4f)
- Cancellation effects are reproduced exactly
- All EFT contributions can be linearized out (relevant for propagator corrections)

Higgs and EW fit: main features

- $U(3)^5$ flavor symmetry
- all relevant interactions included
- tree-level, interference only
- analytic predictions (as much as possible)
 - EW observables: all well known at tree level
 - doubly-resonant WW production computed in Berthier, Bjørn, Trott 1606.06693
 - for Higgs we want to use STXS

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

LesHouches 2015 1605.0469 LHCHXSWG 1610.0792 Berger et al. 1906.0275

Higgs and EW fit: main features

- $U(3)^5$ flavor symmetry
- all relevant interactions included
- tree-level, interference only
- analytic predictions (as much as possible)
 - EW observables: all well known at tree level
 - doubly-resonant WW production computed in Berthier, Bjørn, Trott 1606.06693
 - for Higgs we want to use STXS

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

LesHouches 2015 1605.0469 LHCHXSWG 1610.0792 Berger et al. 1906.0275

signal evts. in analysis k:

Global exp. fit to $n_k \rightarrow (\sigma \cdot B)_{if}$ for defined i, f categories. Assumes SM ε, A !

Ilaria Brivio (ITP)

The SMEFT program: some recent developments

Higgs and EW fit: main features

- $U(3)^5$ flavor symmetry
- all relevant interactions included
- tree-level, interference only
- analytic predictions (as much as possible)
 - EW observables: all well known at tree level
 - doubly-resonant WW production computed in Berthier, Bjørn, Trott 1606.06693
 - for Higgs we want to use STXS

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

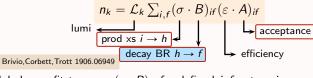
LesHouches 2015 1605.0469 LHCHXSWG 1610.0792 Berger et al. 1906.0275

signal evts. in analysis k:

$$lumi \underbrace{\begin{array}{c} n_k = \mathcal{L}_k \sum_{i,f} (\sigma \cdot B)_{if} (\varepsilon \cdot A)_{if} \\ \downarrow \\ prod \times s \ i \rightarrow h \\ \hline \\ decay \ BR \ h \rightarrow f \end{array}}_{\text{decay BR } h \rightarrow f} \underbrace{\begin{array}{c} acceptance} \\ \downarrow \\ efficiency \end{array}}_{\text{efficiency}}$$

Global exp. fit to $n_k \rightarrow (\sigma \cdot B)_{if}$ for defined *i*, *f* categories. Assumes SM ε , *A*!

Ilaria Brivio (ITP)


Higgs and EW fit: main features

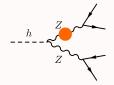
- $U(3)^5$ flavor symmetry
- all relevant interactions included
- tree-level, interference only
- analytic predictions (as much as possible)
 - EW observables: all well known at tree level
 - doubly-resonant WW production computed in Berthier, Bjørn, Trott 1606.06693
 - for Higgs we want to use STXS

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

LesHouches 2015 1605.0469 LHCHXSWG 1610.0792 Berger et al. 1906.0275

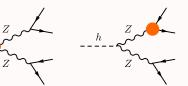
signal evts. in analysis k:

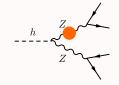
Global exp. fit to $n_k \rightarrow (\sigma \cdot B)_{if}$ for defined *i*, *f* categories. Assumes SM ε , *A*!


Ilaria Brivio (ITP)

Inclusive width $H \rightarrow 4f$ in the SMEFT

1 corrections to SM diagrams

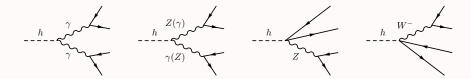

 $\propto g_{\mu\nu}$ (SM-like) $\propto g_{\mu\nu} p \cdot q - p_{\nu} q_{\mu} (Z_{\mu\nu} Z^{\mu\nu} h)$ $\delta g_L, \delta g_R$


 $-im_Z\delta\Gamma_Z + (2m_Z - i\Gamma_Z)\delta m_Z$ $p^2 - m_z^2 + i\Gamma_Z m_Z$

> hard to extract from MC simulation! full treatment requires analytic calculation

Inclusive width $H \rightarrow 4f$ in the SMEFT

1 corrections to SM diagrams



 $\begin{array}{l} \propto g_{\mu\nu} \; (\text{SM-like}) \\ \propto g_{\mu\nu} p \cdot q - p_{\nu} q_{\mu} \left(Z_{\mu\nu} Z^{\mu\nu} h \right) \end{array}$

 $\delta g_L, \delta g_R$

 $\frac{-im_Z\delta\Gamma_Z + (2m_Z - i\Gamma_Z)\delta m_Z}{p^2 - m_Z^2 + i\Gamma_Z m_Z}$

2 genuine SMEFT diagrams

Estimating $\delta\Gamma/\Gamma_{SM}$ analytically

Brivio, Corbett, Trott 1906.06949

fully analytical treatment. automated with general decomposition:

$$\mathcal{A}_{V_{1}} \stackrel{i}{\swarrow} \mathcal{A}^{\dagger}_{V_{3}} \mathcal{A}^{\dagger}_{V_{3}}$$
$$\mathcal{A}_{V_{2}} \stackrel{k}{\swarrow} \mathcal{A}_{V_{4}} \stackrel{i}{\checkmark} \mathcal{A}_{V_{4}} \stackrel{i}{\sim} \mathcal{B}_{HV_{1}V_{2}} \mathcal{B}_{HV_{3}V_{4}} \stackrel{i}{\searrow} \mathcal{T}_{V_{1}} \stackrel{i}{\checkmark} \mathcal{T}_{V_{1}V_{2}V_{3}V_{4}} \stackrel{i}{\lor} \mathcal{L}_{V_{4}} \stackrel{i}{\checkmark} \mathcal{T}_{V_{1}V_{2}V_{3}V_{4}} \stackrel{i}{\lor} \mathcal{L}_{V_{4}} \stackrel{i}{\mathstrut} \mathcal{L}_{V_{4}} \stackrel{i}{\mathstrut} \mathcal$$

for $m_a \equiv 0$ there are only **8** independent $\mathcal{F}_{V_1 V_2 V_3 V_4}$. For each $\{V\}$ set:

- numerical integration of phase space: Vegas in Mathematica T. Hahn 0404043
- cross-check: RAMBO + 2 independent parameterizations of phase space

Kleiss, Stirling, Ellis Comput. Phys. Commun. 40(1986) 359

Ilaria Brivio (ITP)

Analytic results for the total Higgs width

Brivio, Corbett, Trott 1906.06949

- full inclusive calculation including $h \rightarrow \gamma \gamma, gg, b\bar{b}, c\bar{c}, \tau^+ \tau^-, Z\gamma, 4f$
- tree-level, interference only
- U(3)⁵ flavor symmetry

with $\{m_W, m_Z, G_F\}$ inputs, $\tilde{C} = C(v/\Lambda)^2$:

$$\frac{\delta \Gamma_{h, full}^{SMEHT}}{\Gamma_{h}^{SM}} \simeq 1 - 1.50 \ \tilde{C}_{HB} - 1.21 \ \tilde{C}_{HW} + 1.21 \ \tilde{C}_{HWB} + 50.6 \ \tilde{C}_{HG} + 1.83 \ \tilde{C}_{H_{D}} - 0.43 \ \tilde{C}_{HD} + 1.17 \ \tilde{C}_{ll}' - 7.85 \ \hat{Y}_{u} \ \text{Re} \tilde{C}_{uH} - 48.5 \ \hat{Y}_{d} \ \text{Re} \tilde{C}_{dH} - 12.3 \ \hat{Y}_{\ell} \ \text{Re} \tilde{C}_{eH} + 0.002 \ \tilde{C}_{Hq}^{(1)} + 0.06 \ \tilde{C}_{Hq}^{(3)} + 0.001 \ \tilde{C}_{Hu} - 0.0007 \ \tilde{C}_{Hd} - 0.0009 \ \tilde{C}_{Hl}' - 2.32 \ \tilde{C}_{Hl}^{(3)} - 0.0006 \ \tilde{C}_{He}$$

partial inclusive widths and $\{\alpha_{\rm em}, m_Z, G_F\}$ input scheme also available.

Ilaria Brivio (ITP)

The SMEFTsim package

an UFO & FeynRules model with*:

Brivio, Jiang, Trott 1709.06492

- the complete B-conserving Warsaw basis for 3 generations, including all complex phases and *LP* terms
- 2. automatic field redefinitions to have **canonical kinetic terms** and **parameter shifts** due to the choice of an input parameters set
- 3. 6 implementations: 3 flavor assumptions \times 2 input schemes

feynrules.irmp.ucl.ac.be/wiki/SMEFT			Standard Model Effective Field Theory – The SMEFTsim package					
			Authors Wara Brivio, Yun Jang and Michael Trott Itaria.brivio@pei.ku.dk, yunjiang@pbi.ku.dk, michael.trott@cern.ch					
Pre-ex	ported UFO files (include restriction	cards)	NBIA and Discovery Center, Niefs Bohr Instit					
	Set A			Set B				
	a scheme	m _W scheme		α scheme	m _W scheme			
Flavor general SMEFT	SMEFTsim_A_general_alphaScheme_UFO.tar.gz	.↓SMEFTsim_A	general_MwScheme_UFO.tar.gz	↓SMEFT_alpha_UFO.zip,↓,	SMEFT_mW_UFO.zip 🕹			
MFV SMEFT	SMEFTsim_A_MFV_alphaScheme_UFO.tar.gz	SMEFTsim_A	MFV_MwScheme_UFO.tar.gz	SMEFT_alpha_MFV_UFO.zip	SMEFT_mW_MFV_UFO.zip			
U(3) ⁵ SMEFT	SMEFTsim_A_U35_alphaScheme_UFO.tar.gz 🕁	SMEFTsim_A	U35_MwScheme_UFO.tar.gz 🛃	SMEFT_alpha_FLU_UFO.zip_	SMEFT_mW_FLU_UFO.zip			

* LO, unitary gauge implementation

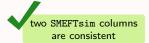
Ilaria Brivio (ITP)

Cross-check with SMEFTsim

e.g.
$$h \rightarrow e^+ \mu^- \bar{\nu}_\mu \nu_e$$

$$\frac{\Gamma_{SMEFT}}{\Gamma_{SM}} = 1 + \sum_{i} \left(\frac{v^2}{\Lambda^2} C_i \right)$$

_		theory	MG interf	MG full xs
	CHW	-1.48743	-1.48844	-1.48002
	CHbox	2.	1.99786	2.00819
CHD		-0.5	-0.499802	-0.495254
	CHl3 -		-3.77082	-3.76292
	Cll1 3.		2.99626	2.99819
analytic calculation Brivio,Corbett,Trott 1906.06949		$y_i/\Gamma_{h\rightarrow i}$ from pu	$e^+ \nu_e \mu^- \bar{\nu}_\mu$,SM	$y_i/\Gamma_{h \to e^+ \nu_e \mu^- \bar{\nu}_\mu, SM}$ from linearized
				full width

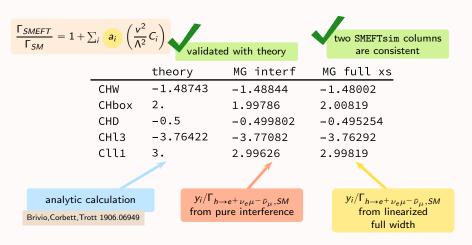

 $\delta\Gamma_W$ omitted here: requires hacking propagator corrections in MC

Ilaria Brivio (ITP)

Cross-check with SMEFTsim

e.g.
$$h \rightarrow e^+ \mu^- \bar{\nu}_\mu \nu_e$$

$$\frac{\Gamma_{SMEFT}}{\Gamma_{SM}} = 1 + \sum_{i} \mathbf{a}_{i} \left(\frac{v^{2}}{\Lambda^{2}} C_{i} \right)$$


		theor	у	MG interf	M	G full xs
	CHW	-1.48	743	-1.48844	- 1	L.48002
	CHbox	2.		1.99786	2.	00819
	CHD	-0.5		-0.499802	- 0	.495254
	CHl3	-3.76	422	-3.77082	-3	3.76292
	Cll1 3.			2.99626	2.	99819
analytic calculation			$y_i/\Gamma_{h \to e^+ \nu_e \mu^- \bar{\nu}_\mu, SM}$			$y_i/\Gamma_{h\to e^+\nu_e\mu^-\bar{\nu}_\mu,SM}$
Brivio,Corbett,Tro	ott 1906.06949		from p	ure interference		from linearized full width

 $\delta\Gamma_W$ omitted here: requires hacking propagator corrections in MC

Ilaria Brivio (ITP)

Cross-check with SMEFTsim

e.g.
$$h \to e^+ \mu^- \bar{\nu}_\mu \nu_e$$

 $\delta\Gamma_W$ omitted here: requires hacking propagator corrections in MC

Ilaria Brivio (ITP)

Higgs production and acceptance corrections

Production

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

- $gg \rightarrow h$
- $qq \rightarrow qqh$ (VBF/VH)
- $qq/gg \rightarrow hll/hl\nu$ (VH)
- $gg \rightarrow t\bar{t}h$
- $qq \rightarrow thj$

Higgs production and acceptance corrections

Production

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

- $gg \rightarrow h$
- $qq \rightarrow qqh (VBF/VH)$
- $qq/gg \rightarrow hll/hl\nu$ (VH)
- $gg \rightarrow t\bar{t}h$
- $qq \rightarrow thj$

known to	NLO	SMEFT	Manohar,Wise 0601212 Deutschmann,Duhr,Maltoni,Vryonidou 1708.00460 Grazzini,Ilnicka,Spira 1806.08832				
parton level inferred from $h \rightarrow 4I$ via crossing sym.							
in progress			Maltoni, Vryonidou, Zhang 1607.05330				
			Degrande,Maltoni,Mimasu,Vryonidou, Zhang 1804.07773				

Higgs production and acceptance corrections

Production

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

- $gg \rightarrow h$
- $qq \rightarrow qqh (VBF/VH)$
- $qq/gg \rightarrow hll/hl\nu$ (VH)
- ▶ $gg \rightarrow t\bar{t}h$
- $qq \rightarrow thj$

known toNLOSMEFTManohar,Wise 0601212
Deutschmann,Duhr,Maltoni,Vryonidou
1708.00460
Grazzini,Ilnicka,Spira 1806.08832parton level inferred from $h \rightarrow 4I$ via crossing sym.in progressMaltoni,Vryonidou,Zhang 1607.05330
Degrande,Maltoni,Mimasu,Vryonidou,
Zhang 1804.07773

Acceptance

- $A = \frac{n_{\rm kin.cuts}}{n_{\rm tot}} \quad \text{assumed to be SM-like in STXS extraction}$
 - ► SMEFT terms with **non-SM Lorentz** structure $(hV_{\mu\nu}V^{\mu\nu}, hV_{\mu}\bar{\psi}\gamma^{\mu}\psi...)$ modify distributions $\rightarrow \Delta A$
 - ΔA calculable for cuts in Lorentz-invariants, requires MC for arbitrary cuts
 - ΔA depends most on decay channel, less on production [preliminary]

Ilaria Brivio (ITP)

Example 2: top quark processes

 $\blacktriangleright U(2)_q \times U(2)_u \times U(2)_d$

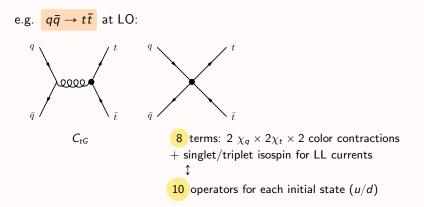
top interactions only for now

up to NLO QCD, quadratic SMEFT

predicitons: SMEFT@NLO

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, Vryonidou, Westhoff, Zhang 1910.03606

22 relevant operators


also: Hartland,Maltoni,Nocera,Rojo, Slade,Vryonidou,Zhang 1901.05965

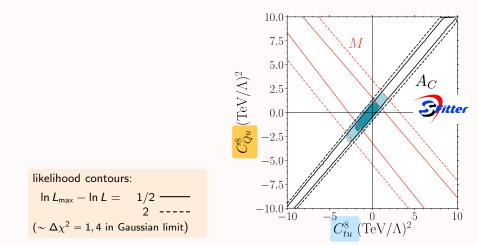
		tZ			
$t\bar{t}Z, t\bar{t}W$					
	single <i>t</i>		$ \begin{aligned} \mathcal{Q}_{t\mathcal{B}} &= (\bar{\mathcal{Q}}\tilde{H}\sigma^{\mu\nu}t)B_{\mu\nu} \\ \mathcal{Q}_{Ht} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t) \end{aligned} $		
tī	$\mathcal{Q}_{tG} = (ar{Q} ilde{H} \sigma^{\mu u} T^A t) G^A_{\mu u}$		$\begin{aligned} \mathcal{Q}_{bW} &= (\bar{\mathcal{Q}} H \sigma^{\mu\nu} \sigma^k b) W^k_{\mu\nu} \\ \mathcal{Q}_{Htb} &= (i \tilde{H}^{\dagger} D_{\mu} H) (\bar{t} \gamma^{\mu} b) \end{aligned}$		
$\begin{array}{l} \mathcal{Q}_{Qu}^{1} = (\bar{Q}\gamma\mu Q)(\bar{u}\gamma^{\mu}u) \\ \mathcal{Q}_{Qd}^{1} = (\bar{Q}\gamma\mu Q)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{tu}^{1} = (\bar{t}\gamma\mu t)(\bar{u}\gamma^{\mu}u) \\ \mathcal{Q}_{tu}^{1} = (\bar{t}\gamma\mu t)(\bar{d}\gamma^{\mu}d) \end{array}$	$ \begin{aligned} \mathcal{Q}^8_{Qu} &= (\bar{Q}\gamma_\mu T^A Q)(\bar{u}\gamma^\mu T^A u) \\ \mathcal{Q}^8_{Qd} &= (\bar{Q}\gamma_\mu T^A Q)(\bar{d}\gamma^\mu T^A d) \\ \mathcal{Q}^8_{tu} &= (\bar{t}\gamma_\mu T^A t)(\bar{u}\gamma^\mu T^A u) \\ \mathcal{Q}^8_{td} &= (\bar{t}\gamma_\mu T^A t)(\bar{d}\gamma^\mu T^A d) \end{aligned} $		$ \begin{array}{l} \mathcal{Q}^{3}_{HQ} = (i H^{\dagger} \overleftarrow{D}^{i}_{\mu} H) (\bar{Q} \sigma^{i} \gamma^{\mu} Q) \\ \mathcal{Q}^{1}_{HQ} = (i H^{\dagger} \overleftarrow{D}_{\mu} H) (\bar{Q} \gamma^{\mu} Q) \\ \mathcal{Q}_{tW} = (\bar{Q} \tilde{H} \sigma^{\mu\nu} \sigma^{k} t) W^{k}_{\mu\nu} \end{array} $		
$\mathcal{Q}_{dq}^{1,1} = (ar{Q}\gamma_{\mu}Q)(ar{q}\gamma^{\mu}q) \ \mathcal{Q}_{dq}^{1} = (ar{Q}\gamma_{\mu}Q)(ar{q}\gamma^{\mu}q) \ \mathcal{Q}_{tq}^{1} = (ar{t}\gamma_{\mu}t)(ar{q}\gamma^{\mu}q)$			$ \begin{aligned} &\mathcal{Q}^{3,8}_{Qq} = (\bar{Q}\gamma_{\mu}\sigma^{k}T^{A}Q)(\bar{q}\gamma^{\mu}\sigma^{k}T^{A}q) \\ &\mathcal{Q}^{3,1}_{Qq} = (\bar{Q}\gamma_{\mu}\sigma^{k}T^{A}Q)(\bar{q}\gamma^{\mu}\sigma^{k}T^{A}q) \end{aligned} $		

Ilaria Brivio (ITP)

A typical issue: flat directions

In any given process, there's typically a **degeneracy of parameters** \rightarrow needs a <u>smart choice</u> of observables and <u>combination</u> of different processes

A typical issue: flat directions


In any given process, there's typically a **degeneracy of parameters** \rightarrow needs a <u>smart choice</u> of observables and <u>combination</u> of different processes

LO, interference only can *never* distinguish $LL \leftrightarrow RR$ or $LR \leftrightarrow RL$

 \rightarrow breaking needs NLO QCD effects / quadratic contributions / inclusion of other processes in the fit (e.g. single-top)

Same vs. different chiralities in $t\bar{t}$

$$\Delta\sigma_{t\bar{t}}^{int} \propto \left[C_{LL}^{8} + C_{RR}^{8} + C_{LR}^{8} + C_{RL}^{8}\right] \left(1 + \beta_{t}^{2}c_{t}^{2} + \frac{2m_{t}^{2}}{s}\right) + \left[C_{LL}^{8} + C_{RR}^{8} - C_{LR}^{8} - C_{RL}^{8}\right] 2\beta_{t}c_{t}$$

Same vs. different chiralities in $t\bar{t}$

$$\Delta \sigma_{t\bar{t}}^{int} \propto \left[C_{LL}^8 + C_{RR}^8 + C_{LR}^8 + C_{RL}^8 \right] \left[1 + \beta_t^2 c_t^2 + \frac{2m_t^2}{s} \right] + \left[C_{LL}^8 + C_{RR}^8 - C_{LR}^8 - C_{RL}^8 \right] 2\beta_t c_t$$

$$\sigma_{t\bar{t}} + m_{t\bar{t}} \text{ dist}$$

$$1 + \beta_t^2 c_t^2 + \frac{2m_t^2}{s} + \left[C_{LL}^8 + C_{RR}^8 - C_{LR}^8 - C_{RL}^8 \right] 2\beta_t c_t$$

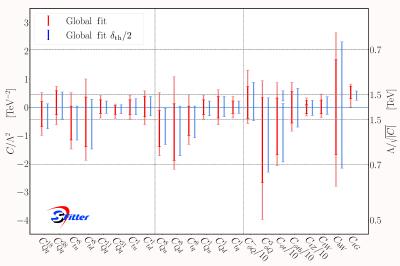
$$\frac{100}{5.0}$$

$$\frac{100}{2.5}$$

$$\frac{1$$

Same vs. different chiralities in $t\bar{t}$

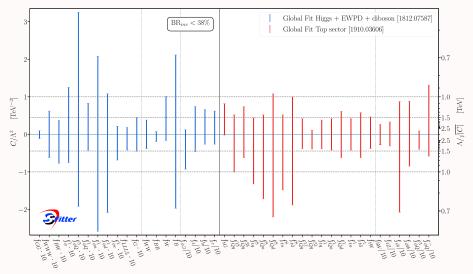
$$\Delta \sigma_{t\bar{t}}^{int} \propto \left[C_{LL}^8 + C_{RR}^8 + C_{LR}^8 + C_{RL}^8 \right] \left[1 + \beta_t^2 c_t^2 + \frac{2m_t^2}{s} \right] + \left[C_{LL}^8 + C_{RR}^8 - C_{LR}^8 - C_{RL}^8 \right] \left[2\beta_t c_t \right]$$


$$\sigma_{t\bar{t}} + m_{t\bar{t}} \text{ dist}$$

$$r_{t\bar{t}} + m_{t\bar{t}} \text{$$

Global fit to top processes: results

fit to $t\bar{t}$, $t\bar{t}Z$, $t\bar{t}W$, single-t, W helicity in t decays


Brivio, Bruggisser, Maltoni, Moutafis, Plehn, Vryonidou, Westhoff, Zhang 1910.03606

Run II, ATLAS+CMS, 68% and 95% C.L.

Top fit vs previous EW+Higgs fit results

EWPD + LHC Run I + II, 95% C.L.

Summary & outlook

- Indirect searches of BSM physics @LHC will become more and more significant
- The SMEFT is a well-defined QFT framework to do this systematically. Not just SM stress-test but a means to understand the global picture
- Global analyses are required.
 - EW + Higgs and top sector have been explored
 - next: EW + Higgs + top ... + B physics
- Work in progress to improve accuracy : NLO, go beyond narrow-width, acceptance corrections ...
- ATLAS/CMS also interested in doing EFT analyses directly. Some studies already public.
- Fitting technology is important. Need:
 - correct estimate of correlations, uncertainties
 - powerful tools for interpretation (machine learning, geometry...)

Summary & outlook

- Indirect searches of BSM physics @LHC will become more and more significant
- The SMEFT is a well-defined QFT framework to do this systematically. Not just SM stress-test but a means to understand the global picture
- Global analyses are required.
 - EW + Higgs and top sector have been explored
 - next: EW + Higgs + top ... + B physics
- Work in progress to improve accuracy : NLO, go beyond narrow-width, acceptance corrections ...
- ATLAS/CMS also interested in doing EFT analyses directly. Some studies already public.

- **Fitting technology** is important. Need:
 - correct estimate of correlations, uncertainties
 - powerful tools for interpretation (machine learning, geometry...)

Backup slides

EW + Higgs fit – observables [preliminary]

118 observables included so far

- ► 8 near-Z-pole EWPO: Γ_Z , $R^0_{\ell,c,b}$, $A^{\ell,c,b}_{FB}$, σ^0_h LEPI combination hep-ex/0509008
- 21 distribution bins for bhabha scattering at LEPII Combination 1302.3415
- ► 74 dist. bins for W⁺W⁻ production at LEPII OPAL: 0708.1311 ALEPH: Eur.Phys.J. C38 (2004) 147 differential combined: 1302.3415
- ▶ 15 inclusive obs. for Higgs measurements in $H \rightarrow \gamma \gamma$ and $H \rightarrow 4\ell$ at LHC
 - ► ATLAS (36 fb⁻¹) ATLAS-CONF-2017-047
 - ► CMS (36 fb⁻¹) CMS PAS HIG-17-031

Top fit – observables

 $pp \rightarrow t \overline{t}$

- 5 $\sigma_{t\bar{t}}$ measurements at 8 and 13 TeV
- ▶ 5 A_C measurements at 8 and 13 TeV
- 2 $d\sigma/dm_{t\bar{t}}$ dist. at 8 and 13 TeV (15 bins tot)
- 4 $d\sigma/dp_T^t(p_T^1, p_T^h)$ dist. at 8 and 13 TeV (30 bins tot)
- 1 $d^2\sigma/dm_{t\bar{t}}dt_{t\bar{t}}$ dist at 8 TeV (16 bins)
- 2 dist in high- p_T region $(p_T^t, m_{t\bar{t}})$ at 8 and 13 TeV (13 bins tot)

 $pp \rightarrow t\bar{t}Z, pp \rightarrow t\bar{t}W$

• 2 $\sigma_{t\bar{t}V}$ measurements for each V at 8 and 13 TeV

Single-top

- 6 $\sigma_{tq,\bar{t}q}$ measurements in *t*-channel at 7, 8, 13 TeV
- 3 σ_{tb.tb} measurements in s-channel at 7, 8 TeV
- 6 σ_{tW,tW} measurements in tW channel at 7, 8, 13 TeV
- 1 σ_{tZq} measurement in tZq at 13 TeV

Top decays

4 measurements of W helicity at 7, 8, 13 TeV