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① Tools, techniques and implementation
• Synopsys Sentaurus TCAD
• Garfield++ (https://garfieldpp.web.cern.ch/garfieldpp/) 
• X-Rays/MIPS implementation and reusability of events

② Simulations – replicating and predicting experimental data
• What did the characterization look like for ITS2?
• How do the simulations compare to the experimental data?
• Next step – simulations on time resolution

③ Summary
• Why Simulations? Why Garfield++?
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ALICE Inner Tracking System 2 (ITS2)
• The currently deployed ITS2 tracker will consist of 7 layers, all using Monolithic 

Active Pixel Sensors  (MAPS) using TowerJazz’ 180nm CMOS process
• The sensor developed for the ITS2 is called the ALice PIxel DEtector (ALPIDE)
• The chip size is 30x15mm² and the pixel dimensions are 27x29µm² 

ITS3 and the switch to the 65nm process node
• wafer scale sensors (300mm) and bendable silicon 

• M. Mager - The LS3 upgrade of the ALICE Inner Tracking System based on ultra-thin, 
wafer-scale, bent Monolithic Active Pixel Sensors

• smaller electronics in n/p-well free up space
• shrinking the pixel pitch to 20µm, 15µm or even 10µm possible
• more complex design choices become possible

ITS4 and beyond
• better time resolution and more radiation hardness
• probably full silicon detector?

Introduction to ALICE, ITS2/3 and ALPIDE
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Tools, techniques and implementation
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3D representation of the physical sensor/pixel
• Geometry definition of one or several pixel

• sensor thickness and epitaxial layer thickness
• n-well diameter, form (rectangular or octagonal) and spacing
• voltage applied to n-well and p-well
• periodicity/boundary conditions

• Doping concentration / resistivity profile

• Definition of the simulation procedure
• (quasi)-static or transient

• Visualisation and data taking

Synopsys - Sentaurus TCAD

ALPIDE telescope – J. van Hoorne
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History
• originally written in Fortran by Rob Veenhof for gas detectors
• ported to C++ by Heinrich Schindler
• extended also for silicon detectors (still actively developed)

Particle tracking and signal calculation
• import of electric and weighting fields/potentials from TCAD, Ansys, COMSOL, 

etc. (see backup slides for further detail)
• point like electron hole pairs are tracked through the sensor using drift velocity 

and diffusion
• induced current/charge is collected along the path

Possibility to simulate the behavior of connected electronics
• (semi)-analytic convolution of the signal with a transfer function possible
• or export of the signal and input into electrical simulation software (Cadence, 

Spice) 

Garfield++ - particle tracking and signal calculation
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X-Rays
• Radioactive sources are used in many experiments -> photons of different energy are created
• Position of hit defined or chosen randomly. Depth is given by attenuation in silicon/metal layers
• See backup slides for the modelling of an Fe-55 source

MIPS
• different types of MIPS are implemented in 

Garfield++ using HEED  
• Position of hit and angle have to be chosen

Pixel clusters – boundary conditions
• electric and weighting field only for one pixel needed.
• boundary conditions allow signal for neighbouring pixels
• grouping of electrodes is possible

Reusability of events
• Signals from events (X-Ray, MIPS) can be written to file
• Big time save as one geometry only has to be simulated 

once due to reusability of this data

Implementation of X-Rays/MIPS and reusability of events
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Characterisation – replicating and predicting experimental results
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Sensitivity studies using the INVESTIGATOR chip 
• 134 mini-matrices on one sensor with different pixel pitches, epi thicknesses and electrode geometries to 

maximize the ratio between collected charge and pixel input capacitance

• Beam studies to characterize the seed signal distribution, cluster multiplicity or charge collection efficiency

What did the characterisation for ITS2 look like?
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How accurate is the simulation?
• Immediately pretty good results

How do the simulations compare to the experimental data?
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implementation of accurate carrier
lifetime using the Scharfetter relation
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How accurate is the simulation?
• Immediately pretty good results

How do the simulations compare to the experimental data?
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• some problem areas -> mainly substrate

• Simulation model improved by
implementation of accurate carrier
lifetime using the Scharfetter relation

• nearly perfect results –> higher peak
most probably due to uncertainty in the
doping concentration and therefore
in the extent of the depletion area and
electric fields

• Great match between simulation and
experiment is also seen in the cluster
size distribution

• All of that is achieved without any fit
parameters!



Intrinsic rise and charge collection times
• Signal rise and charge collection behavior for each scenario can be simulated

• Efficiency of collection compared to deposited charges is tracked

Time resolution – does it intrinsically even exist?
• The charge collection time or the time over threshold provide information on

the intrinsic limitations of your sensor

• Only the intrinsic limitations in 
combination with the connected
electronics and its noise let’s you 
define the sensor’s time resolution

• Therefore, Garfield++ provides the
possibility to reuse the signals as
input of electronics simulation
software.

Next step – simulations on time resolution
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collected current

collected charge

More information on those simulations
can be found in the backup slides!



Summary
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No redundancy in simulations as the simulation process is split into two parts
• Each geometry only has to be simulated once to get the electric/weighting fields 

• Results are therefore independent of your device simulation tool
• Sentaurus, Silvaco, ANSYS, COMSOL, semi-analytic fields… everything works

• Signal of each deposited X-Ray photon, MIPS, e/h-pair from Garfield++ can be reused

No fitting parameters and no unphysical assumptions 
• electrons and holes and tracked individually, solely using the electric field

• simulated by foundry’s description of geometry and doping concentration

Direct connection to simulate connected electronics
• via current input into software tools like SPICE, Cadence etc or via convolution with a given transfer 

function

Why Garfield++?
• Implementation has been used and verified countless of times over the last few decades

• Semiconductor is in fact just a tiny extension of Garfield’s roots for gas detectors

Why Simulations? Why Garfield++?
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① Weighting field simulation

② X-Ray photon simulation – example for an FE-55 source

③ MIPS simulation in Garfield++

④ Charge collection time extremely accurate simulation

⑤ Sensor efficiency extremely accurate simulation

Backup slides
CERN – EP Department
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static weighting field/potential
• two (quasi)-static simulations of the sensor at different voltages 

at the readout electrode (V0 and V0+ΔV)

• Weighting field
• get the two electric fields (x-, y-, z-direction) 
• subtract the two electric fields and normalize the difference

• Weighting potential
• same procedure as with fields, but with the two potentials

delayed weighting field/potential 
• short (triangle) voltage pulse on readout electrode
• delayed electric field effects due to non infinite conductivity 

• small field strength, but long lasting effects
• for parallel plates this corrects the static signal by up to 20%

• effects negligible for the MAPS sensors in ALICE
• short time / fast collection in high field regions -> no effect
• long time / slow collection in low field regions -> no effect

Weighting fields and potentials – static/dynamic
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Fe-55 decay probabilities [1]
• 5.89/5.9keV photon – 16.57/8.45%

• 25.02% in total, as energy difference can’t be resolved

• 6.51keV photon – 3.40% 
• 0.64keV photon – 0.52%
• rest is Auger electrons etc.

X-ray attenuation in air [2]
• 5.90keV photon has 23.7g/cm – factor of 0.031/cm
• 6.51keV photon has 17.7g/cm – factor of 0.023/cm
• 0.64keV photon has 3600g/cm – factor of 4.68/cm

• no photons hit the sensor as source is a few cm away

X-ray attenuation in silicon [2]
• 5.90keV photon has 154.7g/cm – factor of 36045/m

• 60% / 83.5% will be deposited within 25µm/50µm

• 6.51keV photon has 119.7g/cm – factor of 27895/m
• 50.1% / 75.2% will be deposited within 25µm/50µm

Correct Simulation of X-Ray deposits – Physics and Implementation
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Photon type selection
• Random number [0,1] decides the photon energy
• 5.9keV if rnd < 0.8804 (88.04% are 5.9keV photons)
• 6.51keV else (11.96% are 6.51keV photons)

Deposition depth selection
• exponentially correct random number W needed
• random number U [0,1] is created

• transformation due to attenuation is W = −
1

µ
ln(𝑈)

• U can’t be arbitrarily small, otherwise selected depth 
would be >50µm 

• Umin = 0.165 for 5.9keV, Umin = 0.248 for 6.51keV

Deposition of electron/hole pairs
• 1636 or 1808e/h-pairs are deposited according to the 

random depth and their energy (5.9keV or 6.51keV)
• x-/z-position of the deposit is randomized in the cell 

to get better statistics

[1] http://www.nucleide.org/DDEP_WG/Nuclides/Fe-55_tables.pdf and http://www.nucleide.org/Laraweb/index.php
[2] https://www.nist.gov/pml/xcom-photon-cross-sections-database and https://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/air.html

http://www.nucleide.org/DDEP_WG/Nuclides/Fe-55_tables.pdf
http://www.nucleide.org/Laraweb/index.php
https://www.nist.gov/pml/xcom-photon-cross-sections-database
https://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/air.html


Simulation setup
• MIPS are defined using HEED in Garfield++. For 50µm silicon the most probable value ≈ 3160e/h pairs

• Angle is defined using angles of spherical coordinates (θ, φ) to cover the whole range of possible angles

• Random numbers define the x/z position of the MIPS entering the sensor as well as the two angles

• For very shallow angles, cutoff depending on the experimental design has to be chosen

• Signal is only collected individually for the first neighbours
• seed pixel – signal group 0
• direct neighbour – signal group 1
• diagonal neighbour – signal group 2

• Each and every event is written to file. The signals of those events can be recombined later.

• Signal can be convoluted using a transfer function directly within Garfield++ or used as input in electrical 
simulation software like Cadence or SPICE

• Time over Threshold and Constant Fraction Discrimination can be used in Garfield++ as well

MIPS simulation with and without angle
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Setup
• epitaxial layer divided into 9x9x10 cells

• -25µm is at the electrode, 0µm is at the 
boundary to the substrate 

• Fe55 photons of 5.9keV = 1636e/h pairs 
deposited in each cell at random positions

• e/h pairs tracked to the electrode

Extreme accuracy of sensor behavior

• Experiments will never provide so much 
detail, so for optimization such simulations 
crucial

• Questions like “what is the substrate 
contribution” can be answered this way

Charge collection time 
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Setup
• epitaxial layer divided into 9x9x10 cells

• -25µm is at the electrode, 0µm is at the 
boundary to the substrate 

• Fe55 photons of 5.9keV = 1636e/h pairs 
deposited in each cell at random positions

• e/h pairs tracked to the electrode

Definition of seed pixel efficiency
• electrons that reach the seed electrode

Extreme accuracy of sensor behavior

• Experiments will never provide so much 
detail, so for optimization such simulations 
crucial

• Questions like “what is the substrate 
contribution” can be answered this way

Signal pixel efficiency 
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