

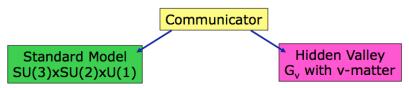
Hidden Valleys in PYTHIA

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics

Dark Matter meeting, Lund, 19-20 November 2019

Based on L. Carloni & TS, JHEP 1009 (2010) 105 and L. Carloni, J. Rathsman & TS, JHEP 1104 (2011) 091

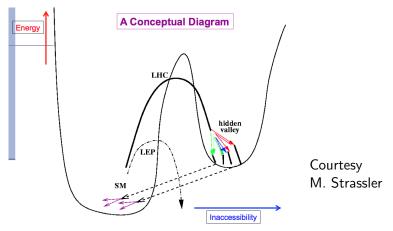

Hidden Valleys: motivation

M. Strassler, K. Zurek, Phys. Lett. B651 (2007) 374; ...

Many BSM models contain new sectors

(= new gauge groups and matter content).

These new sectors may decouple from our own at low energy:



Hidden Valley = Secluded Sector \approx Dark Sector

May provide the cosmologically required Dark Matter, but motivation is not (only) fine-tuning to total DM content.

Here: no attempt to construct a specific model, but to set up a reasonably generic framework.

Experimental relevance

Hidden Valleys experimentally interesting if

- coupling not-too-weakly to our sector, and
- containing not-too-heavy particles.

so that they can give observable consequences at the LHC!

Production

Either of two gauge groups,

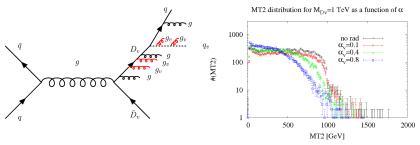
• Abelian U(1), unbroken or broken (massless or massive γ_{ν}),

2 non-Abelian SU(N), unbroken $(N^2 - 1 \text{ massless } g_v's)$,

with matter q_{ν} 's in fundamental representation.

Three alternative production mechanisms

- **1** massive Z': $q\overline{q} \rightarrow Z' \rightarrow q_{\nu}\overline{q}_{\nu}$,
- 2 kinetic mixing: $q\overline{q} \rightarrow \gamma \rightarrow \gamma_{\nu} \rightarrow q_{\nu}\overline{q}_{\nu}$,
- massive F_{ν} charged under both SM and hidden group, so e.g. $gg \to F_{\nu}\overline{F}_{\nu}$. Subsequent decay $F_{\nu} \to fq_{\nu}$.


Question: MadGraph vs. PYTHIA

- If both are run for the same model, at Leading Order, they should give same result. Useful check!
- MadGraph can do LO + visible multijet emission, with any shower for matching&merging (M&M).
- MadGraph can do LO + visible + invisible emission, but then only PYTHIA shower can provide M&M?
- Pure PYTHIA more reliable/stable within its framework, but less precise for hard emissions.
- MadGraph_aMC@NLO can do NLO, but only in visible sector? Should give bulk of NLO corrections to total cross section. Could be approximated by simple multiplicative factor.

Showers

Interleaved shower in QCD, QED and HV sectors: emissions arranged in one common sequence of decreasing emission p_{\perp} scales.

HV U(1): add $q_{\nu} \rightarrow q_{\nu}\gamma_{\nu}$ and $F_{\nu} \rightarrow F_{\nu}\gamma_{\nu}$. HV SU(N): add $q_{\nu} \rightarrow q_{\nu}g_{\nu}$, $F_{\nu} \rightarrow F_{\nu}g_{\nu}$ and $g_{\nu} \rightarrow g_{\nu}g_{\nu}$. By default fixed α_{ν} , but running as option.

Recoil effects in visible sector also of invisible emissions!

In Dark QCD the dark gluons are massless. Thus almost exact copy of QCD, with soft and collinear divergences as handled in a normal dipole picture. As in QCD, a massive quark has no collinear singularity. Higher HV masses than in SM would imply less radiation.

In Dark QED a massless γ_{ν} is again equivalent to a γ , but a massive γ_{ν} would have no soft singularity.

Note 1: decays $\gamma_{\nu} \to f\bar{f}$ and $q_{\nu}\bar{q}_{\nu} \to f\bar{f}$ are essentially isotropic, so different structure even if all energy leaks back, a bit like QCD with enhanced $g \to q\bar{q}$ rate.

Note 2: such $f\bar{f}$ systems are colour singlets, so separated from each other, likely giving lower multiplicity and more separated hadron clusters.

Hadronization and Decays

Hidden Valley particles may remain invisible, or

- Broken U(1): γ_{ν} acquire mass, radiated γ_{ν} s decay back, $\gamma_{\nu} \rightarrow \gamma \rightarrow f\bar{f}$ with BRs as photon (\Rightarrow lepton pairs!)
- SU(N): hadronization in hidden sector, with full string fragmentation setup, permitting up to 8 different q_v flavours and 64 q_vq_v mesons, but for now assumed degenerate in mass, so only distinguish
 - off-diagonal, flavour-charged, stable & invisible
 - diagonal, can decay back $q_{\nu}\overline{q}_{\nu} \rightarrow f\overline{f}$.

Allows visible, invisible or semi-visible jets.

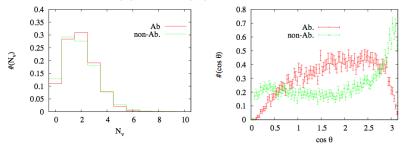
Allows displaced vertices, by adjusting particle lifetimes.

In an SU(N) model a baryon consists of N quarks:

- N = 2 profuse baryon production, $\sim 50\%$.
- N = 3 as SM, $\sim 10\%$ baryons, or less if $m_{\mathrm{q}_{\nu}} \gg \Lambda_{\nu}$.
- N = 4 baryons likely negligible, < 1%.

If baryon is stable and invisible, how distinguish it from scenario with more different q_{ν} flavours, where diagonal fraction drops?

The class HVStringFlav in HiddenValleyFragmentation.cc


- picks new HV flavour and
- combines old with new to give HV meson.

Easy to extend with probability to pick HV diquark and combine to HV baryon.

(Should be enough, but some reservation about kinematics limits when more disparate HV hadron mass scales involved.)

Results

Even when tuned to same average activity, hope to separate U(1) and SU(N):

and several other studies in the two articles.

Appendix 1: Particle Content

name	name	identity	comment	
D_v	Dv	4900001	partner to the d quark	
U_v	Uv	4900002	partner to the u quark	
S_v	Sv	4900003	partner to the s quark	
C_v	Cv	4900004	partner to the c quark	
B_v	Bv	4900005	partner to the b quark	
T_v	Tv	4900006	partner to the t quark	
E_v	Ev	4900011	partner to the e lepton	
ν_{Ev}	nuEv	4900012	partner to the ν_e neutrino	
M_v	MUv	4900013	partner to the μ lepton	
ν_{M_v}	nuMUv	4900014	partner to the ν_{μ} neutrino	
T_v	TAUv	4900015	partner to the τ lepton	
ν_{T_v}	nuTAUv	4900016	partner to the ν_{τ} neutrino	
g_v	gv	4900021	the v-gluon in an $SU(N)$ scenario	
γ_v	gammav	4900022	the v-photon in a $U(1)$ scenario	
Z', Z_v	Zv	4900023	massive gauge boson linking SM- and $v\mbox{-}sectors$	
q_v	qv	4900101	matter particles purely in v -sector	
π_v^{diag}	pivDiag	4900111	flavour-diagonal spin 0 v -meson	
ρ_v^{diag}	rhovDiag	4900113	flavour-diagonal spin 1 v -meson	
π_v^{up}	pivUp	4900211	flavour-nondiagonal spin 0 $v\text{-meson}$	
ρ_v^{up}	rhovUp	4900213	flavour-nondiagonal spin 1 v -meson	
	ggv	4900991	glueball made of v -gluons	

Appendix 2: Parameters

parameter	def.	meaning			
Scenario					
HiddenValley:Ngauge	3	1 for $U(1)$, N for $SU(N)$			
HiddenValley:spinFv	1	0, 1 or 2 for F_v spin 0, 1/2 and 1			
HiddenValley:spinqv	0	q_v spin 0 or 1 when $s_{F_v} = 1/2$			
HiddenValley:kappa	1.	${\cal F}_v$ anomalous magnetic dipole moment			
HiddenValley:doKinMix	off	allow kinetic mixing			
HiddenValley:kinMix	1.	strength of kinetic mixing, if on			
Showers in secluded sector					
HiddenValley:FSR	off	allow final-state radiation			
HiddenValley:alphaFSR	0.1	constant coupling strength			
HiddenValley:pTminFSR	0.4	lower cutoff of shower evolution			
Hadronization in secluded sector					
HiddenValley:fragment	off	allow hadronization			
HiddenValley:nFlav	1	$N_{\rm flav}$, number of distinct q_v species			
HiddenValley:probVector	0.75	fraction of spin-1 v -mesons			
HiddenValley:aLund	0.3	a parameter in eq. (A.1)			
HiddenValley:bmqv2	0.8	$b' = bm_{q_v}^2$ parameter in eq. (A.1)			
HiddenValley:rFactqv	1.0	r parameter in eq. (A.1)			
HiddenValley:sigmamqv	0.5	σ' , such that $\sigma = \sigma' m_{q_v}$			

HiddenValley:alphaOrder = 1 and HiddenValley:Lambda added for running α_{ν} .