Non-Decoupling Dark Matter

Ming-Shau Liu | Cavendish Laboratory, University of Cambridge | Beyond Standard Model Group, CERN

Introduction

- Non-decoupling particles whose majority source of mass is from Higgs vacuum expectation energy are called Loryons.
- Low energy Effective Field Theory (EFT) is described by Higgs EFT (HEFT) instead of Standard Model EFT (SMEFT). [1][2]
- HEFT parameter space can be constrained by Higgs decay data from LHC, including $h\gamma\gamma$, hgg, $h \rightarrow$ inivisble/untagged. [1] [2]
- In addition to collider physics data constraint, Loryons can be natural Dark Matter (DM) candidates. [1] [4] [5]
- Thermal DM relic from early universe obeys Boltzmann equation, and the leftover DM Cosmic Abundance can be measured. [4] [5]
- Cosmic Abundance then further bound Loryon parameters.

Thermal Dark Matter

Elastic: DM scattering conserves DM number density (Non-relativistic)

- Annihilation and scattering were in equilibrium in early universe.
- The inelastic process stops before the elastic process stops.
- "Freeze out" happens when inelastic process terminates due to $\Gamma_{el} \sim H$.
- Both processes terminate when $\Gamma_{el,nel} \sim H$, where H is the Hubble rate.
- DM decouples with everything after $\Gamma_{el,nel} \sim H$

Elastic $\propto T^3$ Inelastic $\propto T^{3/2}e^{-m_{\chi}/T}$

Cosmic Abundance

- Kinetic decoupling happens when elastic scattering stops.
- DM fully decouples, we can predict the relic content.

Cold DM relic

Warm DM relic

- Better agreement between Cold DM and Lyman α
- Warm DM decouples sooner than Cold DM
- Calculate cold abundance using Boltzmann equation [3]

Covariant change = Collisional change

$$\frac{dn}{dt} + 3Hn = -\sum_{spins} \int [f_1 f_2 (1 \pm f_3)(1 \pm f_4) |M_{12 \to 34}|^2$$

 $+f_3f_4(1\pm f_1)(1\pm f_2)|M_{34\to 12}|^2](2\pi)^3\delta(\Delta p)d^4\Pi$

• [3] Assume kinetic equilibrium, low temperature, SM in thermal photon equilibrium.

$$\Omega_{\chi} pprox rac{m s_{today} Y_{today}}{
ho_{critical}} \ pprox rac{10^{-26} cm^3/2}{\langle \sigma v \rangle}.$$

- Ω_{γ} is the fraction of critical density contributed by DM and Y = n/s is density/entropy.
- Today's accepted value $\Omega_{\nu}h^2 \sim 0.3$.

Loryon Candidates

- Loryons are particles that do not decouple.
- Most of their mass are from Higgs vacuum expectation energy.
- Loryon mass is bounded above by unitarity, lives in finite parameter space.
- Parameter space constraint by Higgs measurement and Cosmic abundance
- Focus on scalar Loryon candidates that preserve custodial symmetry [1]
- Define $[L, R]_{\gamma}$ as the representation under custodial symmetry
- $[L,R]_Y$ suppresses colour information

SM Reps
$$(1,1)_Y$$
 $(1,2)_Y$ $(1,3)_Y$ $(1,4)_Y$ $(1,L)_Y$ $(3,1)_Y$ $(3,2)_Y$
Field S_Y Φ_{2Y} Ξ_Y Θ_{2Y} $X_{L,Y}$ $\omega_{|3Y|}$ $\Pi_{|6Y|}$

Table 1. Enumeration of Loryon candidates and their respective symmetry and field [1]

- For each $[L, R]_Y$ with field Φ and
- $U_{L,R}$ is the chosen representation of $SU(2)_{L,R}$
- Transforms $\Phi \to U_L \Phi U_R^{\dagger}$
- The explicit mass term of the scalar Loryon is

$$\mathcal{L} \supset -\frac{m_{ex}^2}{2^{\rho}} tr(\Phi^{\dagger}\Phi)$$

• The Higgs interaction term contributes $\lambda_{h\Phi}v^2/2$ to the mass

$$\mathcal{L} \supset -\frac{\lambda_{h\Phi}}{2\rho} tr(\Phi^{\dagger}\Phi) tr(H^{\dagger}H)$$

- We are interested in the BSM case with most of the mass from $\lambda_{h\Phi}v^2/2$. [1]
- · Loryons as DM candidate constrained by Cosmic Abundance.

Case Study of Singlet Scalar

• Singlet scalar Loryon $(1,1)_Y$ coupled with Higgs through [4]

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\partial_{\mu}S\partial^{\mu}S - \frac{m_0^2}{2}S^2 - \frac{\lambda_S}{2}S^4 - \lambda S^2H^{\dagger}H$$

- The Lagrangian assumes \mathbb{Z}_2 symmetry and that S is the only relevant degree of freedom.
- The two parameters m_0 , λ_S characterises the massive and self-coupling strength.

$$\sigma v \propto \frac{\lambda^2 m_s^2}{m_h^4}, m_s \ll m_h \quad \text{and} \quad \sigma v \approx \frac{\lambda^2}{4\pi m_s^2}, m_s \gg m_h$$

Demand perturbative regime $\lambda \sim \frac{m_S}{10\text{TeV}}$ bounds mass $m_S < 10\text{TeV}$.

Outlook

- This project has so far recreated result for singlet and doublet, and aims to explore the possibility of triplet candidate and beyond.
- Non-decoupling particles has parameter space confined by both Cosmic Abundance and Higgs decay measurement means improved precision of Higgs coupling precision through HL-LHC can point towards potential discovery of Loryons and DM candidate by interpreting constraints on Higgs Effective Field Theory (HEFT) parameter space. [1] [2]
- We assumed the flavour contribution is minimised, which could be loosen for the possibility of new signatures. [1]

Citation

[1] Ian Banta, Timothy Cohen, Nathaniel Craig, Xiaochuan Lu, and Dave Sutherland. Non-decoupling new particles. *Journal of High Energy* Physics, 2022(2), feb 2022.

[2] Timothy Cohen, Nathaniel Craig, Xiaochuan Lu, and Dave Sutherland. Is SMEFT enough? Journal of High Energy Physics, 2021(3), mar 2021.

[3] Mariangela Lisanti. Lectures on dark matter physics. In New Frontiers in Fields and Strings. WORLD SCIENTIFIC, nov 2016. [4] C.P. Burgess, Maxim Pospelov, and Tonnis ter Veldhuis. The minimal model of nonbaryonic dark matter: a singlet scalar. *Nuclear Physics B*,

619(1-3):709–728, dec 2001.

[5] Vanda Silveira and A. Zee. Scalar phantoms. *Physics Letters B*, 161(1):136–140, 1985.

Acknowledgement

M-S. Liu thanks T. You for his supervision and helpful discussions. Liu also wish to thank CERN & Society for their sponsorship for the CERN Non-Member State Summer Student Programme; and Homerton College, University of Cambridge for their support through the Victoria-Brahm-Schild Scholarship.

