

Measurement with O^{2} at ALICE

Identified Particle Spectra

Jan Herdieckerhoff
Supervisor: Nicolò Jacazio
CERN Summer Student Programme

\rightarrow Online-Offline (O^{2}) computing model for Run 3
\rightarrow Standard analysis of identified $R_{A A}$ with new Run 3 software on Run 2 data of $\mathrm{Pb}-\mathrm{Pb}$ collision

Analysis Strategy

\rightarrow Numerator of R_{AA} equation (1) is high- p_{T} spectrum of $\mathrm{Pb}-\mathrm{Pb}$ collisions

$$
\frac{\mathrm{d}^{2} N}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}=\left.\frac{1}{N_{E v}} \cdot \frac{\mathrm{~d}^{2} N}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}\right|_{\text {Raw }} \times \frac{1}{\varepsilon_{\text {Tracking }}} \times \frac{1}{\varepsilon_{\text {Matching }}} \times f_{\text {Primaries }} \times \frac{1}{\varepsilon_{\text {Extra }}}
$$

\rightarrow Ingredients:
$\rightarrow \mathrm{Pb}-\mathrm{Pb}$ collision data collected by ALICE in 2015 with $\sqrt{s}=5.02 \mathrm{TeV}$
\rightarrow Run 245064
\rightarrow Simulation LHC20f6
\rightarrow Data LHC15o
\rightarrow In the following only primary pions and centrality region [0.0, 5.0]
\rightarrow Cuts on simulated tracks:

Cut	Description
\mid Collision.posz()\|<10	Vertex z-coordinate close to interaction point
$\|\eta\|<0.8$	Pseudo-rapidity
$\|y\|<0.5$	Rapidity
isPhysicalPrimary: True	Select Primaries
pdgCode $\left[\pi^{+/-}, K^{+/-}, p^{+/-}\right]$	Select Particle Type
GlobalTracks.isSelected: True	Standard cuts including condition of 1 SPD hit

\rightarrow Same cuts on simulated particles for tracking efficiency
\rightarrow Additional trigger and centrality cuts for data in backup slides

$$
\rightarrow N_{\sigma}^{\mathrm{TOF}}(\pi) \text { vs. } p_{\mathrm{T}} \quad \rightarrow N_{\sigma}^{\mathrm{TOF}}(\pi) \text { projection in range }[-3,+3] \text { on } p_{\mathrm{T}}
$$

$$
N_{\sigma}^{i}=\frac{\text { signal }-\langle\text { signal }\rangle_{i}}{\sigma_{i}}
$$

\rightarrow Based on simulation of track reconstruction and particle production
$\varepsilon_{\text {Tracking }}=\frac{\# \text { Reconstructed tracks }}{\# \text { Created particles }}$
\rightarrow Based on simulation of tracks with TOF information and all reconstructed tracks as above
$\varepsilon_{\text {Matching }}=\frac{\text { \# Tracks with TOF information }}{\# \text { Reconstructed tracks }}$

\rightarrow Here are corrected spectra of π^{+}and π^{-}combined
$\rightarrow N_{\text {Events }}=2601$
$\frac{\mathrm{d}^{2} N}{\mathrm{~d} p_{\mathrm{T}} \mathrm{d} y}=\left.\frac{1}{N_{E v}} \cdot \frac{\mathrm{~d}^{2} N}{\mathrm{~d} p_{\mathrm{T}} \mathrm{d} y}\right|_{\text {Raw }} \times \frac{1}{\varepsilon_{\text {Tracking }}}$
$\times \frac{1}{\varepsilon_{\text {Matching }}} \times \frac{1}{\varepsilon_{\text {PID }}} \times \varepsilon_{\text {Purity }} \times f_{\text {Primaries }}$
\rightarrow Comparison with published results from Ref. [1]
\rightarrow Discrepancy of about 10%

\rightarrow Finish correction of $\mathrm{Pb}-\mathrm{Pb}$ spectrum
\rightarrow Extend analysis on $\mathrm{p}-\mathrm{p}$ spectrum
\rightarrow Find $\left\langle N_{\text {coll }}\right\rangle$
\rightarrow Build $R_{\text {AA }}$
\rightarrow Cuts on data:

Cut	Description
\mid Collision. $\operatorname{posz}() \mid<10$	Vertex z-coordinate close to interaction point
$\|\eta\|<0.8$	Pseudo-rapidity
$\|y\|<0.5$	Rapidity
GlobalTracks.isSelected: True	Standard cuts including condition of 1 SPD hit

\rightarrow Additional trigger cuts (need to be included on simulation as well at some point):

Cut	Description
KINT7	Trigger
$0.1<\mid$ centVOM $\mid<5$	Centrality

\rightarrow Centrality before and after cut on $0.1<\mid$ centVOM $\mid<5$

Vertex Location

\rightarrow Corresponding plot of z-position collision for \mid Collision.posz() $\mid<10$ cut

\rightarrow Based on simulation of $N_{\sigma}^{\mathrm{TOF}}(\pi)$ projection in range $[-3,+3]$ on p_{T} and projection on full range
$\varepsilon_{\text {PID }}=\frac{\# \text { pions in } N_{\sigma}^{\mathrm{TOF}}(\pi)[-3,+3] \text {-range }}{\# \text { pions in } N_{\sigma}^{\mathrm{TOF}}(\pi) \text { full range }}$

Purity and Contamination

\rightarrow Based on simulation of $N_{\sigma}^{\mathrm{TOF}}(\pi)$ projection in range $[-3,3]$ on p_{T} of pions and non-pions

\rightarrow Data-driven approach to find primaries with $\mathrm{DCA}_{x y}$ (distance of closest approach in $x y$-plane)
\rightarrow Fit of simulated $\mathrm{DCA}_{x y}$ projection on p_{T} for secondary and primary particles to $\mathrm{DCA}_{x y}$ projection on p_{T} of data
\rightarrow Fraction of primaries on the right for each bin

\rightarrow Raw spectrum divided by number of events and applied corrections
$\rightarrow N_{\text {Events }}=2601$

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} N}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}=\left.\frac{1}{N_{E v}} \cdot \frac{\mathrm{~d}^{2} N}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}\right|_{\text {Raw }} \times \frac{1}{\varepsilon_{\text {Tracking }}} \\
& \times \frac{1}{\varepsilon_{\text {Matching }}} \times \frac{1}{\varepsilon_{\text {PID }}} \times \varepsilon_{\text {Purity }} \times f_{\text {Primaries }}
\end{aligned}
$$

