

Measurement with O² at ALICE

Identified Particle Spectra

Jan Herdieckerhoff Supervisor: Nicolò Jacazio

CERN Summer Student Programme

August 10, 2021

Motivation

- → Online-Offline (O²) computing model for Run 3
- → Standard analysis of identified R_{AA} with new Run 3 software on Run 2 data of Pb-Pb collision

 \rightarrow Nuclear Modification Factor $R_{\rm AA}$ is defined as

$$R_{\rm AA} = \frac{{\rm d}N^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N^{\rm pp}/{\rm d}p_{\rm T}}$$

 $\rightarrow~R_{\rm AA}$ measurement from Ref. [1]

^[1]S. Acharya et al. (ALICE), Phys. Rev. C 101, 044907 (2020)

→ Numerator of $R_{\rm AA}$ equation (1) is high- $p_{\rm T}$ spectrum of Pb-Pb collisions

$$\frac{\mathrm{d}^2 N}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} = \frac{1}{N_{Ev}} \cdot \frac{\mathrm{d}^2 N}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \bigg|_{\mathrm{Raw}} \times \frac{1}{\varepsilon_{\mathrm{Tracking}}} \times \frac{1}{\varepsilon_{\mathrm{Matching}}} \times f_{\mathrm{Primaries}} \times \frac{1}{\varepsilon_{\mathrm{Extra}}}$$

- → Ingredients:
 - $ightarrow \, {
 m Pb-Pb}$ collision data collected by ALICE in 2015 with $\sqrt{s} = 5.02 \, {
 m TeV}$
 - → Run 245064
 - \rightarrow Simulation LHC20f6
 - \rightarrow Data LHC150

- $\rightarrow\,$ In the following only primary pions and centrality region [0.0, 5.0]
- → Cuts on simulated tracks:

Cut	Description
$ { m Collision.posZ()} < 10$	Vertex <i>z</i> -coordinate close to interaction point
$ \eta < 0.8$	Pseudo-rapidity
y < 0.5	Rapidity
isPhysicalPrimary: True	Select Primaries
pdgCode $[\pi^{+/-},K^{+/-},p^{+/-}]$	Select Particle Type
GlobalTracks.isSelected: True	Standard cuts including condition of 1 SPD hit

- → Same cuts on simulated particles for tracking efficiency
- ightarrow Additional trigger and centrality cuts for data in backup slides

Raw spectrum

 $\rightarrow~N^{\rm TOF}_{\sigma}(\pi)$ vs. $p_{\rm T}$

$$N_{\sigma}^{i} = \frac{\text{signal} - \left< \text{signal} \right>_{i}}{\sigma_{i}}$$

 $\rightarrow~N^{\rm TOF}_{\sigma}(\pi)$ projection in range [-3,+3] on $p_{\rm T}$

Efficiencies

 \rightarrow

 \rightarrow

ETracking 0.8 Based on simulation of track 0. 0.6 reconstruction and particle production 0.5 0.4 0.3 # Reconstructed tracks 0.2 $\varepsilon_{\text{Tracking}} =$ 0 # Created particles 2 3 p_{τ}^{5} (GeV/c) 0 4 Based on simulation of tracks with TOF EMatching 0.7 information and all reconstructed 0.6 tracks as above 0.5 0.4 0.3 # Tracks with TOF information 0.2 $\varepsilon_{\text{Matching}} =$ # Reconstructed tracks 0.1 0 5 6 p_ (GeV/c) 2 3 n 4

Comparison with Published Results

- → Here are corrected spectra of π^+ and π^- combined
- $\begin{array}{l} \rightarrow \ N_{\rm Events} = 2601 \\ \\ \left. \frac{{\rm d}^2 N}{{\rm d} p_{\rm T} {\rm d} y} = \frac{1}{N_{Ev}} \cdot \frac{{\rm d}^2 N}{{\rm d} p_{\rm T} {\rm d} y} \right|_{\rm Raw} \times \frac{1}{\varepsilon_{\rm Tracking}} \\ \\ \\ \times \frac{1}{\varepsilon_{\rm Matching}} \times \frac{1}{\varepsilon_{\rm PID}} \times \varepsilon_{\rm Purity} \times f_{\rm Primaries} \end{array}$
- → Comparison with published results from Ref. [1]
- → Discrepancy of about 10%

[1]S. Acharya et al. (ALICE), Phys. Rev. C 101, 044907 (2020)

- $\rightarrow\,$ Finish correction of $\rm Pb-Pb$ spectrum
- ightarrow Extend analysis on $\mathrm{p-p}$ spectrum
- \rightarrow Find $\langle N_{\rm coll} \rangle$
- → Build $R_{\rm AA}$

 \rightarrow Cuts on data:

Cut	Description	
Collision.posZ() < 10	Vertex <i>z</i> -coordinate close to interaction point	
$ \eta < 0.8$	Pseudo-rapidity	
y < 0.5	Rapidity	
GlobalTracks.isSelected: True	Standard cuts including condition of 1 SPD hit	

→ Additional trigger cuts (need to be included on simulation as well at some point):

Cut	Description
KINT7	Trigger
$0.1 < \left {\rm centVOM} \right < 5$	Centrality

Centrality

→ Centrality before and after cut on 0.1 < |centVOM| < 5

→ Corresponding plot of z-position collision for 100 |Collision.posZ()| < 10 cut</p>

→ Based on simulation of $N_{\sigma}^{\text{TOF}}(\pi)$ projection in range [-3, +3] on p_{T} and projection on full range

 $\varepsilon_{\rm PID} = \frac{\text{\# pions in } N_{\sigma}^{\rm TOF}(\pi)[-3,+3]\text{-range}}{\text{\# pions in } N_{\sigma}^{\rm TOF}(\pi) \text{ full range}}$

Purity and Contamination

→ Based on simulation of $N_{\sigma}^{\text{TOF}}(\pi)$ projection in range [-3,3] on p_{T} of pions and non-pions

 $\varepsilon_{\text{Purity}} = \frac{\text{\# pions in } N_{\sigma}^{\text{TOF}}(\pi) \text{-range}}{\text{\# pions and \# non-pions in } N_{\sigma}^{\text{TOF}}(\pi) \text{-range}} \qquad \varepsilon_{\text{Cont.}} = \frac{\text{\# non-pions in } N_{\sigma}^{\text{TOF}}(\pi) \text{-range}}{\text{\# pions and \# non-pions in } N_{\sigma}^{\text{TOF}}(\pi) \text{-range}}$

- → Data-driven approach to find primaries with DCA_{xy} (distance of closest approach in xy-plane)
- → Fit of simulated DCA_{xy} projection on p_T for secondary and primary particles to DCA_{xy} projection on p_T of data
- → Fraction of primaries on the right for each bin

 → Raw spectrum divided by number of events and applied corrections
 → N_{Events} = 2601

