Precise ATLAS and CMS DY data in the ABM fit

S.Alekhin (Univ. of Hamburg & IHEP Protvino)

(in collaboration with J.Blümlein and S.Moch)

DY data in ABMP16 fit

TABLE II. The list of DIS and DY data used in the current analysis with the collider data listed first. The top-quark production data are detailed in Tables III and IV.

Experiment	Beam (E_b) or center-of-mass energy (\sqrt{s})	L (1/fb)	Process	Kinematic cuts used in the present analysis (cf. orginal references for notations)	Ref.
			DIS		
HERAI + II	$\sqrt{s} = 0.225 \div 0.32$	0.5	$e^{\pm}p \rightarrow e^{\pm}X$	$2.5 \le Q^2 \le 50000 \text{ GeV}^2$,	[4]
	TeV		()	$2.5 \times 10^{-5} \le x \le 0.65$	
	iev		$e^{\pm}p ightarrow \stackrel{(-)}{ u} X$	$200 \le Q^2 \le 50000 \text{ GeV}^2$, $1.3 \times 10^{-2} \le x \le 0.40$	
BCDMS	$E_b = 100 \div 280 \text{ GeV}$		$\mu^+ p \rightarrow \mu^+ X$	$7 < Q^2 < 230 \text{ GeV}^2, 0.07 \le x \le 0.75$	[61]
NMC	$E_b = 90 \div 280 \text{ GeV}$		$\mu^+ p \rightarrow \mu^+ X$	$2.5 \le Q^2 < 65 \text{ GeV}^2, 0.009 \le x < 0.5$	[60]
SLAC-49a	$E_b = 7 \div 20 \text{ GeV}$		$e^-p \to e^-X$	$2.5 \le Q^2 < 8 \text{ GeV}^2, \ 0.1 < x < 0.8,$ $W \ge 1.8 \text{ GeV}$	[54]
					[62]
SLAC-49b	$E_b = 4.5 \div 18 \text{ GeV}$		$e^-p \to e^-X$	$2.5 \le Q^2 < 20 \text{ GeV}^2$, $0.1 < x < 0.9$,	[54]
SI AC 97	F 07.20 C.W		v	$W \ge 1.8 \text{ GeV}$	[62]
SLAC-87	$E_b = 8.7 \div 20 \text{ GeV}$		$e^-p \to e^-X$	$2.5 \le Q^2 < 20 \text{ GeV}^2, \ 0.3 < x < 0.9,$ $W \ge 1.8 \text{ GeV}$	[54] [62]
SLAC-89b	$E_b = 6.5 \div 19.5 \text{ GeV}$		$e^-p \rightarrow e^-X$	$W \ge 1.8 \text{ GeV}$ $2.5 \le Q^2 \le 19 \text{ GeV}^2, \ 0.17 < x < 0.9,$	[56]
SERIE 070	$L_b = 0.5 \cdot 17.5 \text{ GeV}$		c p · c A	$2.5 \le Q \le 15 \text{ GeV}, 6.17 < x < 6.5,$ $W \ge 1.8 \text{ GeV}$	[62]
		I	OIS heavy-quark production	on	
HERA I + II	$\sqrt{s} = 0.32 \text{ TeV}$		$e^{\pm}p \rightarrow e^{\pm}cX$	$2.5 \le Q^2 \le 2000 \text{ GeV}^2$, $2.5 \times 10^{-5} \le x \le 0.05$	[63]
H1	$\sqrt{s} = 0.32 \text{ TeV}$	0.189	$e^{\pm}p \rightarrow e^{\pm}bX$	$5 \le Q^2 \le 2000 \text{ GeV}^2$, $2 \times 10^{-4} \le x \le 0.05$	[15]
ZEUS	$\sqrt{s} = 0.32 \text{ TeV}$	0.354	$e^{\pm}p \rightarrow e^{\pm}bX$	$6.5 \le Q^2 \le 600 \text{ GeV}^2$,	[16]
				$1.5 \times 10^{-4} \le x \le 0.035$	
CCFR	$87 \lesssim E_b \lesssim 333 \text{ GeV}$		$\stackrel{(-)}{\nu} N o \mu^{\pm} c X$	$1 \le Q^2 < 170 \text{ GeV}^2, \ 0.015 \le x \le 0.33$	[64]
CHORUS	$\langle E_b \rangle \approx 27 \text{ GeV}$		$\nu N \rightarrow \mu^+ c X$		[18]
NOMAD	$6 \le E_b \le 300 \text{ GeV}$		$\nu N \rightarrow \mu^+ c X$	$1 \le Q^2 < 20 \text{ GeV}^2, \ 0.02 \lesssim x \le 0.75$	[17]
NuTeV	$79 \lesssim E_b \lesssim 245 \text{ GeV}$		$\stackrel{(-)}{\nu} N o \mu^{\pm} c X$	$1 \le Q^2 < 120 \text{ GeV}^2, \ 0.015 \le x \le 0.33$	[64]
			DY		
ATLAS	$\sqrt{s} = 7 \text{ TeV}$	0.035	$pp o W^{\pm}X o l^{\pm}\nu X$	$p_T^l > 20 \text{ GeV}, \ p_T^{\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV}$	[67]
			$pp \to ZX \to l^+l^-X$	$p_T^l > 20 \text{ GeV}, 66 < m_{ll} < 116 \text{ GeV}$	
	$\sqrt{s} = 13 \text{ TeV}$	0.081	$pp \to W^{\pm}X \to l^{\pm}\nu X$	$p_T^{\nu} > 25 \text{ GeV}, m_T > 50 \text{ GeV}$	[26]
CMC	/- 7 T-V	4.7	$pp \to ZX \to l^+l^-X$	$p_T^l > 25 \text{ GeV}, 66 < m_{ll} < 116 \text{ GeV}$	[24]
CMS	$\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$	4.7 18.8	$p p \to W^{\pm} X \to \mu^{\pm} \nu X$ $p p \to W^{\pm} X \to \mu^{\pm} \nu X$	$p_T^{\mu} > 25 \text{ GeV}$ $p_T^{\mu} > 25 \text{ GeV}$	[24] [25]
DØ	$\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 1.96 \text{ TeV}$	7.3	$p p \to W^{-}X \to \mu^{-}\nu X$ $\bar{p} p \to W^{\pm}X \to \mu^{\pm}\nu X$	$p_T > 25 \text{ GeV}$ $p_T^{\mu} > 25 \text{ GeV}, E_T > 25 \text{ GeV}$	[23]
20	$\sqrt{3} = 1.90 \text{ TeV}$	9.7	$\bar{p}p \to W^{\pm}X \to \mu^{-}\nu X$ $\bar{p}p \to W^{\pm}X \to e^{\pm}\nu X$	$p_T^p > 25 \text{ GeV}, E_T^p > 25 \text{ GeV}$ $p_T^e > 25 \text{ GeV}, E_T^p > 25 \text{ GeV}$	[22]
LHCb	$\sqrt{s} = 7 \text{ TeV}$	1	$pp \to W^{\pm}X \to e^{\pm}\nu X$	$p_T^{T} > 25 \text{ GeV}, Z_T > 25 \text{ GeV}$ $p_T^{\mu} > 20 \text{ GeV}$	[19]
	ν σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ		$pp \to ZX \to \mu^+\mu^-X$	$p_T^{\mu} > 20 \text{ GeV}, 60 < m_{\mu\mu} < 120 \text{ GeV}$	[]
	$\sqrt{s} = 8 \text{ TeV}$	2	$pp \to ZX \to e^+e^-X$	$p_T^e > 20 \text{ GeV}, 60 < m_{ee} < 120 \text{ GeV}$	[21]
		2.9	$pp \to W^{\pm}X \to \mu^{\pm}\nu X$	$p_T^{\mu} > 20 \text{ GeV}$	[20]
ENIAL COS	E 900 C-V		$pp \to ZX \to \mu^+\mu^-X$	$p_T^{\mu} > 20 \text{ GeV}, 60 < m_{\text{eff}} < 120 \text{ GeV}$	100
FNAL-605	$E_b = 800 \text{ GeV}$		$pCu \rightarrow \mu^+\mu^- X$	$7 \le M_{\mu\mu} \le 18 \text{ GeV}$	[68]
FNAL-866	$E_b = 800 \text{ GeV}$		$p p \rightarrow \mu^+ \mu^- X$	$4.6 \le M_{\mu\mu} \le 12.9 \text{ GeV}$	[69]

Impact of ATLAS data on strangeness

	$\kappa_{s}(\mu^{2}=20 \text{ GeV}^{2})$
HERA+ATLAS	0.81(18)
HERA+ATLAS+E866	0.72(8)
ABMP16(incl. NOMAD)	0.66(3)

 κ_s is integral strange sea suppression factor:

$$\kappa_s(\mu^2) = \frac{\int\limits_0^1 x[s(x,\mu^2) + \bar{s}(x,\mu^2)] dx}{\int\limits_0^1 x[\bar{u}(x,\mu^2) + \bar{d}(x,\mu^2)] dx},$$

- The strangeness is in a broad agreement with the one extracted from the dimuon data
- The E866 data are consistent with the ATLAS(2016) central data: $\chi^2/NDP=48/39$ and 40/34, respectively.

NNLO tools' benchmaring

The bands display an integration accuracy obtained with O(month) of the wall time

- The FEWZ predictions somewhat overshoot the data at 7 TeV, while the DYNNLO ones go lower and are in better agreement with the measurements
- At 8 TeV the tendency is different: The FEWZ predictions somewhat undershoot the data and the DYNNLO ones go essentially lower
- FEWZ predictions demonstrate better overall agreement with the data therefore this tool is routinely used in the fit

W and Z 7-TeV ATLAS data in ABM fit

Data are well accommodated in general; forward Z-boson data have particular trend, however, χ^2 is also not bad due to large errors

Non-resonant DY 7-TeV ATLAS data in ABM fit

- The data can be well accommodated into the fit, the total χ^2/NDP for W, Z and Z γ^* data is 68/61
- Account of the photon-photon contribution (in LO) improves agreement → photon distribution can be extracted from the data

Photon PDF fitted to the DY data

(η' x)λ x 10	
10 -2	
10 -3	
	10 ⁻³ 10 ⁻² 10 ⁻¹ x

 μ =100 GeV

Data set	X ² /NDP
ATLAS7 - 1612.03016	68/61
ATLAS8 (high-mass) – 1606.01736	192/132
CMS7 - 1310.7291	59/48

Quite different evolution input for the available photon distributions. Reduces at large scales, however still sensitive to the quark distributions (cf. PDF4LHC issue in LUXqed)

Manohar, Nason, Salam, Zanderighi hep-ph/1708.01256

HERA charm data and m

Theory: FFN scheme, running mass definition

$$m_c(m_c)=1.250\pm0.019$$
(exp.) GeV

ABMP16upd

$$m_c(m_c)=1.252\pm0.018$$
(exp.) GeV

ABMP16

m_(pole)~1.9 GeV (NNLO)

Marquard et al. PRL 114, 142002 (2015)

$$m_{c}(m_{c})=1.246\pm0.023$$
 (h.o.) GeV NNLO

Kiyo, Mishima, Sumino PLB 752, 122 (2016)

$$m_{s}(m_{s})=1.279\pm0.008$$
 GeV

Kühn, LoopsLegs2018

Good consistency with the earlier results and other determinations → further confirmation of the FFN scheme relevance for the HERA kinematics

Gluon and strange PDF updated

- Gluon goes higher, mainly due to more stringent cut on Q² (impact of the power corrections, resummations, etc. is reduced)
- Updated charm/beauty data are consistent with such an enhancement

- Strange sea suppressoin factor goes lower at small x, consistent with 1 within errors
- At moderate x the strange sea is still suppressed, although integral suppression factor $\kappa_s(20 \text{ GeV}^2)=0.71(3)$, a little larger than 0.66(3) for ABMP16 fit

DY: impact of the recent data

PRELIMINARY: Uncertainty correlations are not taken into account (still unpublished); smaller impact on fit is expected when they are included

Summary and outlook

- First non-resonant ATLAS and CMS DY data have been included into ABM fit
 - QED evolution is implemented
 - smooth accommodation of the ATLAS7 (W,Z/ γ *), ATLAS8(γ *) (high mass), CMS7(Z/ γ *) with account of the photon-photon contribution (NLO EW still has to be included)
 - first results on the photon distribution fitted to the DY data obtained
- More Z/γ* data are being processed:

ATLAS at 8 TeV 1710.05167 ATLAS at 7 TeV 1305.4192 (high mass) 1404.1212 (low mass)

CMS at 8 TeV 1412.1115

- better constraint on photon distribution is expected
- W and Z Atlas at 5 and 8 TeV can be quickly included into the fit, when the correlation matrices are provided

EXTRAS

$Z \Rightarrow l^+l^-$

DY: towards double differential distributions

- Reasonable agreement with the previous fit predictions
- Complimentary constraint on PDFs → improved quark disentangling
- Other CMS and ATLAS data in progress; the bottleneck is NNLO computations with the fiducial-volume cuts

Closure test of the NNPDF3.1 fit

- Different trend for W and Z data $\Rightarrow \chi^2/NDP = 400/34$; problems with the flavor disentangling
- Suppressed (fitted) charm distribution requires corresponding enhancement of strangeness sur to constraint from W data Thorne QCD@LHC2018

