

Coulomb Excitation of Neutron-rich Isotopes around A~140 (IS 411)

Thomas Behrens

Physik-Department E12

TU München

Physical motivation: Evolution of B(E2) values around N=82

Experimental setup and realisation at REX-ISOLDE with MINIBALL

Preliminary results for ¹⁴⁴Xe & ^{124,126}Cd

Conclusion & Outlook

Grodzins' rule (version by Raman)

Motivation

 $E(2_1^+)[\text{keV}] * B(E2;0_{gs}^+ \rightarrow 2_1^+)[e^2b^2] = 2.57Z^2 A^{-2/3}$

[S.Raman et.al., Atomic Data and Nucl. Data Tables 78,1 (2001)]

Setup

Results

Outlook

Isospin dependent modification of Grodzins' rule $E(2_1^+)[\text{keV}] * B(E2; 0_{gs}^+ \rightarrow 2_1^+)[e^2b^2]$ $= 2.57Z^2 A^{-2/3} \left(1.288 - 0.088(N - \overline{N})\right)$

[D.Habs, R.Krücken, INTC-P-156 (2002)]

Minimum mass for fixed A (from Weizsäcker's mass formula)

$$\overline{N} = \frac{A}{2} \frac{1.0 + 0.0128 A^{2/3}}{1.0 + 0.064 A^{2/3}}$$

REX-ISOLDE & MINIBALL

Motivation

Setup

Results

REX

MINI

Outlook

Statistics for Cd isotopes

Isotop	Target [mg/cm ²]	Laser ON [h]	Laser ON/OFF [h]	E from REX [MeV/A]	beam intensity [10 ⁴ pps]	beam purity [%]
¹²⁴ Cd	⁶⁴ Zn [1.8]	15	6.5	2.85	0.9 - 1.5	40 - 85
¹²⁶ Cd	⁶⁴ Zn [1.8]	26	7	2.85	1.4	75

- Protons on converter target (didn't hit the converter!)
- new quartz transfer line ⇒ improved purity!!

Results

Outlook

- Laser ionization (RILIS)
- varying beam intensities and purities (increasing In)
 ⇒ problems with the ISOLDE target
- tried different settings for line heating and target heating

Statistics for Xe isotopes

Isotop	Target [mg/cm ²	²] [mg/cm ²]	Running time [h]	E from REX [MeV/A]	beam intensity [10 ⁴ pps]	beam purity [%]
¹⁴⁴ Xe	⁹⁶ Mo [1.7]	Al foil [4.1]	2.5	2.55	~5.4	~90
¹⁴⁴ Xe	¹⁹⁷ Au [1.0]	Al foil [1.5]	1	2.55	~5.4	~90
¹⁴⁴ Xe	⁹⁶ Mo [1.7]	My foil [1.6]	19	2.7	~5.4	~90
Populto		chielding to a	ou dour c	viactiles at low ()	

• shielding to slow down ejectiles at low θ_{lab} \Rightarrow changed due to low energy from REX

Outlook

- changed target to check for scattered particles
 beam was not focused, might have hit collimator
- changes of IH phase, line & target heating
 ⇒ improved intensity
- 2h on stopper foil ⇒ looking for decay lines of ¹⁴⁴Cs

¹²⁴Cd: $E_{\gamma}(2_1^+)$ peaks

¹²⁶Cd: E_v(2₁+) peaks

Outlook

runnig time: ~26 h (Laser ON) Doppler correction incl.

Contaminants: ¹²⁶In, ¹²⁶Cs

¹⁴⁴Xe: E_v(2₁+) peaks

Helping hands and heads...

T. Behrens¹, V. Bildstein¹, R. Gernhäuser¹, Th. Kröll¹,
R. Krücken¹, M. Mahgoub¹, P. Maierbeck¹, W. Weinzierl¹,
D. Habs², R. Lutter², T. Morgan², P. Thirolf²,
F. Finke³, M. Seidlitz³, N. Warr³, D. Weisshaar³,
S. Franchoo⁴, J. Diriken⁵, P. van Duppen⁵,
O. Ivanov⁵, I. Stefanescu⁵,
J. van de Walle^{5,6}, J. Cederkall⁶, L. Fraile⁶,
U. Köster⁶, T. Sieber⁶, D. Voulot⁶, F. Wenander⁶,
A. Ekström⁷, T. Davinson⁸,
and the **REX-MINIBALL** collaboration

¹TU München, ²LMU München, ³Universität zu Köln, ⁴IPN Orsay, ⁵KU Leuven, ⁶CERN, ⁷Lund University, ⁸University of Edinburgh,

Thank you for your attention!

REX-ISOLDE @ CERN

Thomas Behrens

Physical Motivation

