

High-precision mass measurements of exotic nuclides: The 2006 harvest of ISOLTRAP

Alexander Herlert for the ISOLTRAP Collaboration

CERN, PH-IS, Geneva

ISO Nuclides investigated 2003-2006 TRAP 126 82 82 proton number 50 50 28 20 2003-2006: 8 24 on-line runs 125 nuclides investigated

neutron number

Isomer selection and spin assignment

K. Blaum et al., Europhys. Lett. 67, 586 (2004)

Test of CKM unitarity

J.C. Hardy and I.S. Towner, Phys. Rev. C 71, 055501 (2005)

Nucleosynthesis and r-process

ISOL TRAP

New temperature-stabilization system

Mass excess comparison for Ag and Cd data

First on-line run with application of Ramsey technique

masses for CKM-unitarity test (superallowed β decay)

... and other investigations from Penning trap spectrometers

Mass and half-life of ³⁸Ca

Experiment IS437: Precision measurement of the half-life and the β -decay Q value of the superallowed 0⁺ \rightarrow 0⁺ β decay of ³⁸Ca

- fluorination of ³⁸Ca at target and removal of daughter ^{38m}K with REXTRAP
- half-life measurement with tape-station system mounted behind REXTRAP •
- mass measurement (in parallel) with ISOLTRAP

Time-separated rf excitations (Ramsey scheme)

I S O L TRAP

The case of ^{26,27}AI

^{16.07%} ²⁷Al(p,γ)²⁸Si

83.93%

19.94%

•

PΤ

67.20%

Ion yields at ISOLDE

Application of in-trap decay

Decay in the buffer-gas-filled preparation trap

produced at ISOLDE

not produced at ISOLDE

- Make more radioactive species available
- Nearly simultaneous ω_c measurement of mother and daughter nuclei

Herlert et al., New J. Phys. 7, 44 (2005)

First application of in-trap decay mass spectrometry

Mass excess of neutron-rich Mn and Fe isotopes

Outlook - New ion source (graphite oven and gas inlet)

Outlook - Hydrogen cooling for light nuclides

Thanks to my co-workers:

G. Audi, S. Baruah, D. Beck, K. Blaum, G. Bollen, M. Breitenfeldt, P. Delahaye,
M. Dworschak, S. George, C. Guénaut, U. Hager, F. Herfurth, A. Kellerbauer,
H.-J. Kluge, D. Lunney, M. Marie-Jeanne, M. Mukherjee, S. Schwarz,
R. Savreux, L. Schweikhard, C. Weber, C. Yazidjian, ...,
and the ISOLTRAP and ISOLDE collaboration

<u>Thanks for the funding and support:</u> **BMBF**, GSI, CERN, ISOLDE, EU networks EUROTRAPS, EXOTRAPS, and NIPNET

Thanks a lot for your attention!

