Comparison of ssWW VBS MCs between ATLAS & CMS

Ankita Mehta, Xavier Janssen, Kristin Lohwasser, Karolos Potamianos, Marjorie Shapiro

> VBSCan Meeting, Helsinki Feb. 19-21, 2020

Overview

- Multiboson and VBS/VBF processes entering precision area _
 - But are we able to keep up with theorists? -
- VBS signal strength extracted using fits \rightarrow based on **SM MC predictions**

 - But which? Potentially large since ϵ . Different interference / NLO EW correction treatments $\frac{2}{\frac{2}{6}}$ -
- But how different are CMS/ATLAS?
 - Step 1: Compare MC predictions -(shower, color-flow, tuning)
 - Easier: Compare MC using RIVET
 - Evaluate data difference w/o adapting measurement
 - Step 2: Compare data
 - Needs to extrapolate in same phase space

Comparisons VBS: same-sign WW final state

- First ATLAS/CMS multiboson comparisons
 - ssWW: <u>https://arxiv.org/pdf/1709.05822</u>

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-030/

Updated ATLAS MC configurations:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-004/

- Comparisons using RIVET (<u>https://rivet.hepforge.org/</u>)
 - Based on public codes of general VBS phase spaces:
 - ssWW: VBScan theory comparison (<u>https://arxiv.org/abs/1803.07943</u>)
 - Gathered here: <u>https://gitlab.cern.ch/lhcewkwg/lhcewkwg-multiboson/mc-comparison</u>
 - Added QCD Control Region

VBS with ssWW

- Cuts: emu final state only
 - Leptons with pT > 20 GeV & |eta| < 2.5
 - MET>40 GeV, pT(jet) > 30 GeV, & |eta} < 4.5
 - Δη_jj > 2.5, mjj > 200 GeV
 - dR(jj),dR(ll),dR(jl) > 0.3
 - Leptons from taus are excluded!!
- CMS Samples : <u>MADGRAPH</u>, POWHEG
- ATLAS Samples: <u>SHERPA</u>, POWHEG, MADGRAPH
- VBScan samples: only with W+W+
- Only statistical uncertainty included in the plots

DISCLAIMER: All plots are normalised to unity

(simulation details in the backup!)

Number of jets

CMS MG5 with large number of jets (more than ATLAS SHERPA sample) Lower numbers esp. at high njets for new ATLAS samples with dipole recoil scheme

Number of jets (W+W+)

mjj & Δηjj

ATLAS SHERPA sample behaves differently

mjj & Δηjj (W+W+)

CMS MG & VBScan samples softer dijet mass spectrum

Third Jet Kinematics

CMS MG sample larger activity in central region

Third Jet Kinematics (W+W+)

QCD samples

Consistent behaviour within uncertainty

QCD samples

Consistent behaviour within uncertainty

Status of ATLAS-CMS Combined Note

- A preliminary version of the analysis note available under review by CMS SMP & GEN groups (ATLAS has signed off)
- Includes details about the MC samples used, analysis cuts, plots & fiducial cross sections

Needs some additions to justify the observed differences (~10%) in POWHEG fiducial cross sections between ATLAS & CMS. *suggestions are very welcome!!*

Conclusions & Outlook

- 1) In some cases striking differences between ATLAS and CMS
 - a) In terms of the code both ATLAS & CMS are consistent
 - b) We did some tests on the MG5 samples to check the reason for differerence
- Effect of different Pythia8 tunes: No significant change observed in fiducial cross sections when CMS LHE files are showered with pythia8 tunes from ATLAS and vice-versa.
- Spin correlations: CMS did not use MadSpin while ATLAS did: We checked this effect by turning off MadSpin in ATLAS samples and the changes are minor.

Conclusions & Outlook

5. Effect of PDF choice

- Ran the ATLAS samples with LO PDF sets being used in the CMS samples and the acceptance turns out to be the same.

6. Effect of Scale choice

- CMS scale choice: "Cluster external states until reducing the system to a 2->2 topology whose transverse mass is used for setting the scale." ATLAS and VBScan are using the same functional form for the scale (sqrt(ptj1*ptj2))
- To be checked using ATLAS PW+H7 dipole samples-> checked and the difference would be larger than 10%

Conclusions & Outlook

7. ΔR cuts

- CMS run_card.dat has generation level cut of 0.4 on ΔR_{jj} , $\Delta R_{ll} \& \Delta R_{jl} 0.4$
- SR has $\Delta R=0.3$, so there is some missing phase space
- Effect 1-2% from tests on inclusive ATLAS (no generation level cuts!)

8. W-->I nu Width & semi-leptonic Branching Ratio

If MadSpin is not used then MG5 uses the NLO-level W width and not the LO one. Thus no rescaling is needed for CMS samples which don't use MadSpin.

Backup

Sample name	Generator	μ -scale	Shower	Tune	PDF	further settings
			ATLAS			
Sherpa (ATLAS)	SHERPA V2.2.2	dynamic scale, mww	internal	internal	NNPDF3.0- NNLO	multileg-LO, exactly six EW vertices with one additional parton at LO accuracy in QCD
PW+Py8 (ATLAS)	POWHEG v2, VBS approx.	fixed scale, m_W	PYTHIA 8.212	AZNLO	NNPDF3.0- NLO	
PW+Py8 dipole- recoil (ATLAS)	POWHEG v2	fixed scale, m_W	PYTHIA 8.235	AZNLO	NNPDF3.0- NLO	Dipole Recoil [5]
MG5+Py8 dipole- recoil (ATLAS)	MG5_AMCNLO v2.6.2	dynamic scale, $\sqrt{pT^{ m jet1}pT^{ m jet1}}$	PYTHIA 8.235	A14	NNPDF3.0- NLO	LO, Dipole Re- coil [5]
			CMS			
MG5+Py8 (CMS)	MG5_AMCNLO v2.3.3	dynamic scale, using a $2\rightarrow 2$ topology from the clustered external state	РҮТНІА 8.226	CUETP8M1 [6]	NNPDF3.0- LO	LO, exactly six EW vertices
PW+Py8 (CMS)	POWHEG v2	fixed scale, m_W	PYTHIA 8.226	CUETP8M1	NNPDF3.0- NLO	NLO
		generi	c samples (V	/BScan)		
PW+Py8 (VBScan)	POWHEG v2	dynamic scale, $\sqrt{pT^{ m jet1}pT^{ m jet2}}$	PYTHIA 8.230	Monash	NNPDF3.0- NLO	NLO

 Table 2: Summary of the samples that are compared in this note.
 Screenshot