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The DUNE Near Detector
• LArgon: similar response to FD.

• GArgon: "zoomed-in" interactions on Argon + 
magnetic field.

• Carbon: on-axis monitoring + neutron detection in 
carbon interactions.

• Off-axis movement: resolve degeneracies in 
interaction model + data-driven oscillation analysis.



Neutrino measurement degeneracies
• A threefold conspiracy makes it very hard to make precise neutrino 

measurements:
• Lack of neutrino initial state knowledge: neutrino energy spectrum wider than oscillation features we 

want to resolve, by construction. 

• Incomplete final state knowledge: even in LArTPCs we miss parts of the final state, like neutrons.

• Imprecise nuclear models: nuclei are messy environments… (ask Stephen about this!)
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Neutrino measurement degeneracies
• A threefold conspiracy makes it very hard to make precise neutrino 

measurements:
• Lack of neutrino initial state knowledge: neutrino energy spectrum wider than oscillation features we 

want to resolve, by construction.

• Incomplete final state knowledge: even in LArTPCs we miss parts of the final state, like neutrons.

• Imprecise nuclear models: nuclei are messy environments… (ask Stephen about this!)

• Illustrate the problem with a mock data study:

Introduce a bias in neutrino energy reconstruction by moving 
20% of the energy carried by final state protons to neutrons.
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Neutrino measurement degeneracies
• A threefold conspiracy makes it very hard to make precise neutrino 

measurements:
• Lack of neutrino initial state knowledge: neutrino energy spectrum wider than oscillation features we 

want to resolve, by construction.

• Incomplete final state knowledge: even in LArTPCs we miss parts of the final state, like neutrons.

• Imprecise nuclear models: nuclei are messy environments… (ask Stephen about this!)

• Illustrate the problem with a mock data study:

Reweight sample to match near detector 
nominal observation (i.e., fit the ND data)
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Neutrino measurement degeneracies
• A threefold conspiracy makes it very hard to make precise neutrino 

measurements:
• Lack of neutrino initial state knowledge: neutrino energy spectrum wider than oscillation features we 

want to resolve, by construction.

• Incomplete final state knowledge: even in LArTPCs we miss parts of the final state, like neutrons.

• Imprecise nuclear models: nuclei are messy environments… (ask Stephen about this!)

• Illustrate the problem with a mock data study:

Get biased oscillation measurements 
even with good ND data/MC agreement!
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Neutrino measurement degeneracies
• A threefold conspiracy makes it very hard to make precise neutrino 

measurements:
• Lack of neutrino initial state knowledge: neutrino energy spectrum wider than oscillation features we 

want to resolve, by construction.

• Incomplete final state knowledge: even in LArTPCs we miss parts of the final state, like neutrons.

• Imprecise nuclear models: nuclei are messy environments… (ask Stephen about this!)

• Illustrate the problem with a mock data study:

DUNE-PRISM allows us to statistically 
manipulate the initial state using off-axis data
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DUNE-PRISM data-driven analysis
• Use flux model to solve linear algebra problem: which linear 

combination of ND fluxes matches the FD oscillated spectrum?

L. Pickering
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DUNE-PRISM data-driven analysis
• Apply same coefficients to ND data to get FD prediction.

• Didn't use interaction model! (to first order…)

L. Pickering
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Near detector efficiency
• For this to work, we need to understand 

differences in efficiency and response between 
the ND and the FD.

•  Most obvious difference is the detector size:
• ND will not contain very large hadronic systems.

• ND does not contain high-ish energy muons.

• But measures them in downstream tracker.

• Would like to know ND efficiency for a given 
event without relying on interaction model.

L. Pickering
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Data-driven efficiency
• Use symmetries of neutrino interactions in ArgonCube:

• Translations in LAr volume and rotations around beam axis.

• Algorithm:

• For a selected ND event, rotate and translate 3D hadronic energy 

deposits and muon position and momentum vectors N times.
• For the hadronic side:

• Count how many of the trials would have passed the hadronic 

containment cut.

• Take the ratio to the total number of trials get the “geometric” 

hadronic containment efficiency for that event.
• For the muon side:

• Use a neural network trained on particle gun MC to estimate 
the muon selection efficiency for a given translation/rotation.

• Combine both to get event-level efficiency.
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L. Pickering



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Original selected event
Muon not shown

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 1

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 2

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 3

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 4

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 5

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 6

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 7

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 8

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 9

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Translations and rotations
Hadronic system
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Active volume
Veto boundary
Fiducial volume (TDR LBL)
Average neutrino direction 

Trial 10

Event is selected if < 30 MeV is deposited in the veto region, 30 cm from active volume edge.



Muon efficiency neural network

23C. Marshall

• Train neural network to predict fate of muon as a function of its position and momentum.
• Output is the probability for the muon to be sampled in the tracker, be contained in the 

liquid argon, or not be selected.
• Start with simple neural network with 2 hidden layers with 64 nodes each and ReLU activation.

• Implemented in PyTorch: https://github.com/cvilelahep/MuonEffNN

https://github.com/cvilelahep/MuonEffNN


Muon efficiency neural network output
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Z. Chen

True LAr contained muons True MPD sampled muons

• Neural network accurately predicts fate of muons based on initial state.

• Encapsulates ND geometry and muon propagation physics.

• Can be trained on particle gun MC: no interaction model dependence.



Compare NN to simulation
• Reweight all MC events by the neural network output (“tracker” and “contained” 

probabilities) and compare to distribution of true contained and tracker muons.

• Neural network reproduces features in momentum and vertex distributions.
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Muon efficiency neural network output

26

Z. Chen

True tracker sampled muons

Vertices of true tracker sampled 
muons with NN probability < 95%

• True tracker events in the low neural network score tail tend to be at the 
edges of the detector.

• Harder to predict whether these events will make it into the tracker just with 
initial position and momentum. 

Tracker



ND/FD acceptance differences
• Data-driven efficiency estimation works for events that are selected in the ND.

• But there will be events at the FD that would never be contained in the ND.

• Obtain an ND efficiency for each FD event using the same algorithm.

• FD events with very low ND efficiency are not used in data-driven analysis.

• Can still be used in traditional MC-based analysis, where the prediction is extrapolated from the ND data.

• There is no direct ND constraint on these events!

Constrained by ND
DUNE-PRISM analysis

Unconstrained by ND
MC-based analysis
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ND to FD response translation

• The missing piece is translating ND events to the FD:
• Does a given ND event pass the FD NN event selection criteria?

• How do ND observables map to the FD (Erec, etc)? 

• Plan recently proposed by Hiro Tanaka:

• Use machine learning to "unfold" ND events back to a level that is common with the FD. E.g., 
energy depositions in the LAr.

• Propagate those energy depositions through the FD simulation and reconstruction chain.

• Get an "FD-equivalent" for each ND event.

28

https://indico.fnal.gov/event/22617/contributions/197878/attachments/135044/167315/DUNE-PRISM_NDFD_translation.pdf


ND to FD response translation
• I'm interested in collaborating with the SLAC group on this. 

• In particular, I would like to test this approach using ProtoDUNE data.
• Feedback welcome! ;)

H. Tanaka
 

29



Summary
• DUNE-PRISM will allow for a largely data-driven oscillation 

analysis.

• For this to be successful we need to be able to match ND 
events to FD events. This is challenging!
• Developed a method to correct for first-order efficiency and 

acceptance differences.

• Promising proposal to translate events between the two detectors.

• Taking a fundamentally different approach to oscillation 
analysis has led to the development of exciting new ideas!
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