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The DUNE Near Detector
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Neutrino measurement degeneracies

A threefold conspiracy makes it very hard to make precise neutrino

measurements:

®  Lack of neutrino initial state knowledge: neutrino energy spectrum wider than oscillation features we

want to resolve, by construction.

®* Incomplete final state knowledge: even in LAFTPCs we miss parts of the final state, like neutrons.

®*  Imprecise nuclear models: nuclei are messy environments... (ask Stephen about this!)
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measurements:
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Neutrino measurement degeneracies

* Athreefold conspiracy makes it very hard to make precise neutrino

measurements:

®  Lack of neutrino initial state knowledge: neutrino energy spectrum wider than oscillation features we

want to resolve, by construction.

®* Incomplete final state knowledge: even in LAFTPCs we miss parts of the final state, like neutrons.

® Imprecise nuclear models: nuclei are messy environments... (ask Stephen about this!)
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Neutrino measurement degeneracies

* Athreefold conspiracy makes it very hard to make precise neutrino

measurements:

m—p ®  Lack of neutrino initial state knowledge: neutrino energy spectrum wider than oscillation features we

want to resolve, by construction.

®* Incomplete final state knowledge: even in LAFTPCs we miss parts of the final state, like neutrons.

® Imprecise nuclear models: nuclei are messy environments... (ask Stephen about this!)
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Off axis position (m)

DUNE-PRISM data-driven analysis

* Use flux model to solve linear algebra problem: which linear

combination of ND fluxes matches the FD oscillated spectrum?

X107

9%}
o

Neutrinos/cm? per GeV per POT

b

30

Off axis position (m)

20

10

(=]

= =] =
v

JYSToM UOTIBRUIqUIOD JBAUI]

NuFit 4.1, A|M2|32 = 2.52x10° eV, sin*(8,,) = 0.525

%1015 FD Oscillated Flux
54_ — FDy, = v,
= ——— ND Flux Match
~ 3
H
g
527
(=9
IE 1 Al
o
=0 ) ; :

0 2 4 6 8 10

E, [GeV]
L. Pickering



Off axis position (m)

DUNE-PRISM data-driven analysis

* Apply same coefficients to ND data to get FD prediction.

* Didn'f use interaction model! (to first order...)
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Near detector efficiency

®* For this to work, we need to understand Veto region

Vertex selection
region

Hadr. shw.

differences in efficiency and response between
the ND and the FD.
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®* Most obvious difference is the detector size:

* ND will not contain very large hadronic systems.
L. Pickering
®* ND does not contain high-ish energy muons.

® But measures them in downstream tracker.

* Would like to know ND efficiency for a given

event without relying on inferaction model.
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Data-driven efficiency

* Use symmetries of neutrino interactions in ArgonCube:

®*  Translations in LAr volume and rotations around beam axis.

* Algorithm:

®* Foraselected ND event, rotate and translate 3D hadronic energy

deposits and muon position and momentum vectors N times.
*  For the hadronic side:

®  Count how many of the trials would have passed the hadronic
conftainment cut.
®* Take the ratio to the total number of trials get the “geometric”

hadronic containment efficiency for that event.

*  For the muon side:
*  Use aneural network trained on particle gun MC to estimate L. Pickering
the muon selection efficiency for a given translation/rotation.

*  Combine both to get event-level efficiency. 5

A

_ 0x0.8+1x03+0x0.70+1x0.4+1x0.95 _ gg07
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Translations and rotations

Hadronic system
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Translations and rotations
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Translations and rotations
Hadronic system
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Translations and rotations

Hadronic system
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Translations and rotations

Hadronic system
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Translations and rotations

Hadronic system
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Translations and rotations
Hadronic system
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Translations and rotations

Hadronic system
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Translations and rotations
Hadronic system
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Translations and rotations

Hadronic system
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Translations and rotations

Hadronic system
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Muon efficiency neural network

®* Train neural network to predict fate of muon as a function of its position and momentum.

» OQutput is the probability for the muon to be sampled in the tracker, be contained in the
liquid argon, or not be selected.
e Start with simple neural network with 2 hidden layers with 64 nodes each and RelLU activation.
* Implemented in PyTorch: https:/github.com/cvilelahep/MuonEffNN
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https://github.com/cvilelahep/MuonEffNN

Muon efficiency neural network output

®* Neural network accurately predicts fate of muons based on initial state.

® Encapsulates ND geometry and muon propagation physics.

®* Can be trained on particle gun MC: no interaction model dependence.
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Compare NN to simulation

Reweight all MC events by the neural network output (“tracker” and “contained”

probabilities) and compare to distribution of true contained and fracker muons.

Neural network reproduces features in momentum and vertex distributions.
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Muon efficiency neural network output

 True tracker events in the low neural network score tail fend to be at the

edges of the detector.

* Harder to predict whether these events will make it into the tracker just with

initial position and momentum.
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ND/ FD acceptance differences

Data-driven efficiency estimation works for events that are selected in the ND.
* Butthere will be events at the FD that would never be contained in the ND.
®* Obtain an ND efficiency for each FD event using the same algorithm.

®* FD events with very low ND efficiency are not used in data-driven analysis.

®  Canstill be used in fraditional MC-based analysis, where the prediction is extrapolated from the ND data.

° There is no direct ND constraint on these events!
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ND to FD response translation

®* The missing piece is translating ND events to the FD:

Does a given ND event pass the FD NN event selection criteria?

How do ND observables map to the FD (Erec, etc)?

®* Planrecently proposed by Hiro Tanaka:

Use machine learning to "unfold" ND events back to a level that is common with the FD. E.g.,
energy depositions in the LAr.

Propagate those energy depositions through the FD simulation and reconstruction chain.

Get an "FD-equivalent" for each ND event.
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https://indico.fnal.gov/event/22617/contributions/197878/attachments/135044/167315/DUNE-PRISM_NDFD_translation.pdf

ND to FD response translation

* I'minterested in collaborating with the SLAC group on this.

®* Inparticular, | would like to test this approach using ProtoDUNE data.

 Feedback welcome!;)

ProtoDUNE data or MC

PROTODUNE
PROTODUNE PROTODUNE OBSERVABLE
EARTIGLES RESPONSE RECON (E G. "PARTICLE
ID")

PROTODUNE PILEUP
SINGLEEVERT REMOVAL
l

| PROTODUNE l PROTODUNE PROTODUNE
FARTICEES RESPONSE RECON ]:{ OBSERVABLE ]

ProtoDUNE MC chain

H. Tanaka
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Summary

DUNE-PRISM will allow for a largely data-driven oscillation
analysis.
For this to be successful we need to be able to match ND

events to FD events. This is challenging!

* Developed a method to correct for first-order efficiency and

acceptance differences.

* Promising proposal to translate events between the two detectors.

Taking a fundamentally different approach to oscillation

analysis has led to the development of exciting new ideas!
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