Status and prospects of Dark Matter direct detection experiments in the low (< 10 GeV) mass range

Susana Cebrián scebrian@unizar.es

Status and prospects of DM direct detection experiments in the low (< 10 GeV) mass range

- Direct detection of DM
- Searches for low mass DM
- Searches for distinctive signatures:
 - Annual modulation
 - Directionality
- New technologies

Susana Cebrián scebrian@unizar.es

Direct detection of DM

Direct detection of DM

The field is very active for more than three decades

- Using different detection technologies
- Focused on different physics cases

R. Gaitskell The Identification of Dark Matter Conference (IDM2020) (Remote) R&D Planning Construction Running Ended

Name	Detector	Target	Active Mass	Fiducial Live Exposure	Status	Start Ops (after construction)	End Ops	Location of Experiment
XMASS	Scintillator	LXe	832 kg		Ended	2010	2019	Kamioke
XENON100	TPC	LXe	62 kg		Ended	2012	2016	LNGS
XENON1T	TPC	LXe	1,995 kg		Ended	2017	2019	LNGS
XENON1T (Ionization)	TPC Ionizonly	LXe	1,995 kg		Ended	2017	2019	LNGS
XENONnT	TPC	LXe	7,000 kg	20 t yr	Construction	2021	2025	LNGS
LUX	TPC	LXe	250 kg	30,000 kg d	Ended	2013	2016	SURF
LUX (Ionization)	TPC Ionizonly	LXe	250 kg		Ended	2017	2019	SURF
LZ	TPC	LXe	8,000 kg	20 t yr	Construction	2021	2025	SURF
PandaX-II	TPC	LXe	580 kg		Ended	2016	2018	CJPL
PandaX-4T	TPC	LXe	4.000 kg	20 t yr	Construction	2021	2025	CJPL
LZ HvdroX	TPC	LXe+H2	8.000 kg		R&D	2026		SURF
Darwin / US G3	TPC	LXe	40,000 kg	200 t yr	Planning	2028	2033	LNGS / SURI
DEAP-3600	Scintillator	LAr	3.300 kg		Running	2016	202X	SNOLAB
DarkSide 50	TPC	LAr	46 kg	A6 ka year	Ended	2012	2010	INCS
Darkside-LM (Ionization)	TPC Ioniz -only	LAr	46 kg	To ng yoal	Ended	2018	2019	LNGS
Darkside-20k	TPC	LAr	-10 kg	200 1 1	Construction	2025	2030	LNGS
ARGO	TPC	LAr	300 t	3000 t yr	Planning	2030	2035	SNOLAB
	Scientillator	Nal	250 /		Puppies	2002		INGS
DAMA/LIBRA	Scintiliator	rvell	250 kg		Running	2003		LNGS
ANAIS-112	Scintillator	Nal	112 kg	Goal 5 years	Running	2017	2022	Canfranc
COSINE-100	Scintillator	Nal	106 kg		Running	2016	2021	YangYang
COSINE-200	Scintillator	Nal	200 kg		Construction	2022	2025	YangYang
COSINE-200 South Pole	Scintillator	Nal	200 kg		Planning	2023	?	South Pole
COSINUS	Bolometer Scintillator	Nal	?		Planning	2023	?	LNGS
SABRE PoP	Scintillator	Nal	5 kg		Construction	2021	2022	LNGS
SABRE (North)	Scintillator	Nal	50 kg		Planning	2022	2027	LNGS
SABRE (South)	Scintillator	Nal	50 kg		Planning	2022	2027	SUPL
CDEX-10	Ionization (77K)	Ge	10 kg	103 kg d	Running	2016	?	CJPL
CDEX-100 / 1T	Ionization (77K)	Ge	100-1000 kg		Planning	202X		CJPL
SuperCDMS	Cryo Ionization	Ge	9 kg		Ended	2011	2015	Soudan
CDMSLite (High Field)	Cryo Ionization	Ge	1.4 kg	~75 kg d	Ended	2012	2015	Soudan
CDMS-HVeV Si	Cryo Ionization HV	Si	0.9 g	0.5 g d	Ended	2018	2018	SNOLAB
SuperCDMS CUTE	Cryo Ionization / HV	Ge/Si	5 kg/1 kg		Construction	2020	2022	SNOLAB
SuperCDMS SNOLAB	Cryo Ionization / HV	Ge/Si	11 kg/3 kg		Construction	2023	2028	SNOLAB
EDELWEISS III	Cryo Ionization	Ge	20 kg		Ended	2015	2018	LSM
EDELWEISS III (High Field)	Cryo Ionization HV	Ge	33 g		Running	2019		LSM
CRESST-II	Bolometer Scintillation	CaWO4	5 kg		Ended	2012	2015	LNGS
CRESST-III	Bolometer Scintillation	CaWO4	240 a		Ended	2016	2018	INGS
CRESST-III (HW Tests)	Bolometer Scintillation	CaWO4	210 9		Running	2020	2010	LNGS
PICO 2	Rubble Chamber	0259	244		Ended	2012	2015	
PICO-2	Bubble Chamber	Care	2 Kg		Construction	2013	2015	SNOLAB
P100-40	Bubble Chamber	Coro	35 Kg		Construction	2020		SNOLAB
PICO-60 PICO-500	Bubble Chamber Bubble Chamber	CF3I,C3F8 C3F8	52 kg 430 kg		Construction	2013	2017	SNOLAB
	1							
DRIFT-II	Gas Directional	CF4	0.14 kg		Ended			Boulby
NEWAGE-03b'	Gas Directional	CF4	14 g	4.5 kg d	Ended	2013	2017	
NEWS-G	Gas Drift	CH4			Ended	2017	2019	LSM
NEWS-G	Gas Drift	CH4			Construction	2020	2025	SNOLAB
DAMIC	CCD	Si	2.9 g	0.6 kg d	Ended	2015	2015	SNOLAB
DAMIC	CCD	Si	40 g Si		Ended	2017	2019	SNOLAB
DAMIC100	CCD	Si	100 g Si		Not Built			SNOLAB
DAMIC-M	CCD Skipper	Si	1 kg Si		Construction	2021	2024	LSM
SENSEI	CCD Skipper	Si	2 g Si	2g x 24 d	Running	2019	2020	Fermilab u/g
SENSEI	CCD Skipper	Si	100 g Si		Construction	2021	2023	SNOLAR

Direct detection of DM

Probe DM candidates below the GeV scale

- lighter targets: to keep kinematic matching
- lower threshold: to detect smaller signals
- change search channel: light WIMPs cannot transfer sufficient momentum to generate detectable nuclear recoils → absorption or scattering off by nuclei (NR) or electrons (ER)

US Cosmic Vision,

arXiv:1707.04591

Proposed **Migdal effect:** WIMP-nucleus interaction can lead to excitation/ionization of the recoiling atom (additional signal larger for low mass DM)

strahlung

X

Ionization elect

Auger electron

E. Aprile et al, Phys. Rev. Lett. 123 (2019) 241803

Status and prospects of DM direct detection experiments in the low (< 10 GeV) mass range

Direct detection of DM

- Searches for low mass DM
 - Bolometers
 - Liquid Xe and Ar detectors
 - Ionisation detectors
 - Bubble chambers
- Searches for distinctive signatures:
 - Annual modulation
 - Directionality
- New technologies

Susana Cebrián scebrian@unizar.es

Low mass DM: Bolometers

Cryogenic detector: measurement of **phonons** (heat) by the tiny temperature increase induced Simultaneous measurement of **ionization/scintillation** allows discrimination of ER and NR

+ excellent energy resolution, no quenching of heat

- difficult operation at mK, low mass crystals for low energy threshold (sub-100 $\text{eV}_{\text{nr}})$

 \rightarrow leading results in GeV and sub-GeV region

EDELWEISS-III: at Modane lab (France) 24 **Ge** detectors, 870 g each, 200 eV_{ee} threshold \rightarrow very good results at 5-30 GeV and limits also on ALP

L. Hehn et al, Eur. Phys. J. C 76 (2016) 10 548

EDELWEISS-subGeV: above ground and at Modane

33 g **Ge** bolometers 55 eV energy threshold (heat) → exploring DM mass down to 45 MeV (considering **Migdal effect**) and dark photons E. Armengaud et al, Phys. Rev. D 99 (2019) 082003

Q. Arnaud et al, arXiv:2003.01046

7

M. Schumann, J. Phys. G46 (2019)103003

Low mass DM: Bolometers

SuperCDMS: at Soudan lab (US) 15 Ge detectors, 600 g each, 70 eV threshold Exploiting the Neganov-Trofimov-Luke (NTL) effect at high bias voltage (HV) to convert charge into heat → results down to 1.5 GeV from different analyses R. Agnese et al, Phys. Rev. Lett. 120 (2018) 061802; Phys. Rev. D 99 (2019) 062001

0.93 g / 10.6 g Si detectors on surface \rightarrow results on e scattering and dark photons / nucleon scattering

D. W. Amaral, et al, arXiv:2005.14067, I. Alkhatib et al, arXiv:2007.14289

SuperCDMS: at SNOLAB (Canada) Start mid-2021, 30 kg, **Ge** and **Si** NTL detectors

S. Cebrián, FIPs 2020, 31 August 2020

Low mass DM: Bolometers

CRESST-III: at Gran Sasso lab (Italy) 10 24 g **CaWO₄** scintillating bolometers 15 mK

30 eV energy threshold achieved

Run 3 started on July 2020

 \rightarrow best limits for WIMP-nuc down to 160 MeV

A.H. Abdelhameed et al, Phys. Rev. D 100 (2019) 102002

Phase 2:

100 crystals Goal 10 eV threshold

Alternative materials under study

Low mass DM: Liquid Xe detectors

Noble gases (Xe, Ar) scintillate and can be ionized Liquid state: massive and compact DM targets \rightarrow leading results from a few GeV to TeV

Dual-phase liquid noble gas detector:

TPC measuring S1 primary scintillation +

- S2 secondary scintillation from drifted e-
 - + S1/S2 to distinguish ER and NR
 - + 3D event reconstruction at mm (z from drift time)
 - + Xe: SD interaction

M. Schumann, J. Phys. G46 (2019)103003

XENON1T: at Gran Sasso

From 1 t y, 1 keV_{ee} (5 keV_{nr}) threshold E. Aprile et al, Phys. Rev. Lett. 121 (2018) 111302 Only S2 signal, >0.4 keV_{ee}, results on WIMP-e E. Aprile et al, Phys. Rev. Lett. 123 (2019) 251801 LUX: at SURF (US) D.S. Akerib et al, Phys. Rev. Lett. 118 (2017) 021303 PANDAX-II: at Jinping (China) X. Cui et al, Phys. Rev. Lett. 119 (2017) 181302 Q. Wang, arXiv:2007.15469 \rightarrow strongest constraints >6 GeV

Low mass DM: Liquid Xe detectors

Search for light DM enhanced by the Migdal effect or Bremsstrahlung looking for

e recoils

E. Aprile et al, Phys. Rev. Lett. 123 (2019) 241803 D.S. Akerib et al, Phys. Rev. Lett. 122 (2019) 131301

Many searches for **other DM models**: inelastic WIMP-nuc, WIMP-nuc Effective Interactions, bosonic Super-WIMPs, light mediators, dark photons... Solar axions or axion coupling as an explanation of XENON1T excess of ER? E. Aprile et al, arXiv:2006.09721 [hep-ex]

Being built or commissioned (operation 2021-2025): LUX-ZEPLIN (LZ): at SURF 7 t active mass PANDAX-4T: at Jinping XENONNT: at Gran Sasso 5.9 t active mass

DARWIN: at Gran Sasso? 40 t, target 200 t y, start 2027

Low mass DM: Liquid Ar detectors

Different scintillation pulse shape for ER and NR \rightarrow very efficient PSD

Single-phase liquid Ar detector: measuring only scintillation.

+ PSD, position reconstruction

DEAP-3600: at SNOLAB Results from 231 days ER leakage probability of 4 10⁻⁹ R. Ajaj et al, Phys. Rev. D 100 (2019) 022004

Dual-phase liquid Ar detector: S1/S2 measurement + PSD

DarkSide-50: at Gran Sasso Viability of underground Ar, with low ³⁹Ar Results from 2 y

P. Agnes et al, Phys. Rev. D 98 (2018) 102006

Low mass DM: Liquid Ar detectors

DarkSide-50: low mass DM search Detecting S2 only 100 eV_{ee} threshold, 6786.0 kg d exposure \rightarrow leading sensitivity at 1.8–3.5 GeV P. Agnes et al, Phys. Rev. Lett. 121 (2018) 081307

 \rightarrow results on **e scattering** P. Agnes et al, Phys. Rev. Lett. 121 (2018) 101303.

GADMC: Global Argon DM Collaboration

Radiopure Ar from Urania+Aria facilities Using SiPMs

DarkSide-20k: at Gran Sasso Acrylic vessels, atmospheric Ar veto TPC 3.5 m long Target: 200 t y exposure, start 2022

DarkSide-LowMass:

1 t, ultrapure Ar, vessel and SiPMs

ARGO: at SNOLAB (start 2029) 300 t fiducial mass Atmospheric neutrinos as limiting background

13

Low mass DM: Ionization Ge detectors

Point-Contact Germanium detector: allow to reach sub-keV thresholds thanks to a very small capacitance, in combination with a large target mass.

- + Quite easy scalability, low background
- No ER/NR discrimination

As CoGENT detector (440 g) operated at Soudan

C. E. Aalseth et al, Phys. Rev. D 88 (2013) 012002

CDEX: at Jinping lab CDEX-1:

- Two detectors: CDEX-1A (915 g) and CDEX-1B (994 g)
- Improved threshold to 160 eV_{ee} in CDEX-1B
- Constraints on WIMP-nucleon SI and SD couplings from 737.1 kg d

L. T. Yang et al, Chin. Phys. C 42 23002 (2018)

including Migdal effect

Z. Z. Liu et al, Phys. Rev. Lett. 123 (2019) 161301

CDEX-10:

- 10 kg detector array immersed in liquid N₂
- Analysis threshold at 160 eV_{ee}
- Constraints from 102.8 kg d

H. Jiang et al, Phys. Rev. Lett. 120 241301 (2018)

Working for **CDEX-100**, **CDEX-1T**: home-made Ge detectors

14 S. Cebrián, FIPs 2020, 31 August 2020

Low mass DM: Ionization Si detectors

X-ray? n.WIMP?

e

Diffusion

limited

Silicon charge-coupled devices (CCDs): charge produced in the interaction drifts towards the pixel gates, until readout.

+ 3D position reconstruction possible: the depth of interaction correlated with the lateral charge diffusion

+ Effective particle identification and background rejection

Low mass DM: Ionization Si detectors

DAMIC-M: at Modane

- 50 CCDs (13.5 g each) for kg-year exposures
- Commissioning in 2023
- **Skipper readout:** multiple measurement of the pixel charge by onchip readout scheme to reduce noise and achieve single electron counting with high resolution

SENSEI: at Fermilab

- Prototypes with 0.0947 g and 2 g total active mass
- Operated at MINOS Hall (100 m underground)
- \rightarrow constraints on **e scattering** and hidden-sector candidates

O. Abramoff et al, Phys. Rev. Lett. 122, 161801 (2019) L Barak et al, arXiv:2004.11378

Proposal to install a 100-g detector (48 CCDs) with custom-designed electronics at SNOLAB in 2021 (one CDD operating).

OSCURA: 10 kg in 2027

Low mass DM: Gas detectors

Spherical Proportional Counter: unconventional gas detector; able to achieve very low energy threshold thanks to very low capacitance (<1 pF) for a large volume. Anode: small ball at the center, avalanche region.

I. Giomataris et al, JINST 2008 P09007

SEDINE detector: at Modane

- 60-cm NOSV copper sphere •
- Filled with **Ne-CH₄**(0.7%) at 3.1 bar (280 g active mass)
- 42 d WIMP search run, 50 eV_{ee} threshold •

Q. Arnaud et al, Astropart. Phys. 97, 54 (2018)

- 140-cm low activity copper sphere, built in France, commissioning data with **CH**₄, now at SNOLAB
- Lighter targets: H, He
- Single electron response (gain, drift and diffusion ٠ times, ...) characterized with a laser system
 - Q. Arnaud et al, Phys. Rev. D 99 (2019) 102003
- Developing electroformed copper spheres with PNNL ٠

Low mass DM: Gas detectors

HP TPC + Micromegas: gas TPC holding a pressurized gas at 10 bar equipped with micromesh gas structures (Micromegas) readouts

- + Event topology to discriminate backgrounds
- + Low intrinsic radioactivity
- + Scaling-up

I.G. Irastorza et al, JCAP 01 (2016) 034 F. J. Iguaz et al, Eur. Phys. J. C 76 (2016) 529

TREX-DM: at Canfranc lab (Spain)

- ~24 I of pressurized gas (flexible target: ~0.3 kg Ar, ~0.16 kg Ne at 10 b)
- Commissioning runs with atmospheric Ar+1% iC₄H₁₀ and Ne+2% iC₄H₁₀
- Largest Microbulk Micromegas 25x25 cm², built at CERN
- Prospects for threshold: down to 0.1 keV_{ee}

J. Castel et al, Eur. Phys. J. 79 (2019) 782

Low mass DM: Bubble chambers

Bubble chamber: target liquids in metastable superheated state; sufficiently dense energy depositions start the formation of bubbles; read by cameras

- + Almost immune to electronic recoil background sources
- + Different targets, most containing ¹⁹F, highest sensitivity to **SD p couplings**
- Threshold detector: no direct measurement of recoil energy

PICO: merging PICASSO and COUPP collaborations since 2012 M. Schumann, J. Phys. G46 (2019)10303

In design, start data taking in 2022

Low mass DM: summary of results (SI)

The Review of Particle Physics (2020), P.A. Zyla *et al.* Prog. Theor. Exp. Phys. 2020, 083C01. Review on Dark Matter, L. Baudis and S. Profumo

Low mass DM: summary of prospects (SI)

Physics Briefing Book Input for the European Strategy for Particle Physics Update 2020 CERN-ESU-004, 10 January 2020 arXiv:1910.11775v2 [hep-ex]

Low mass DM: summary (SD)

Eur. Phys. J. C 79 (2019) 630

A.H. Abdelhameed et al, Phys. Rev. D 100 (2019)10 102002

Many experiments sensitive not only to SI but also to SD interactions

CRESST: ⁷Li PICO-60: ¹⁹F CDMSlite, EDELWEISS: ⁷³Ge LUX, PANDAX-II, XENON1T: ¹²⁹Xe+¹³¹Xe CRESST: ⁷Li, ¹⁷O CDMSlite, CDEX-10, EDELWEISS : ⁷³Ge LUX, PANDAX-II, XENON1T: ¹²⁹Xe+¹³¹Xe

Low mass DM: summary (SI, SD)

Status and prospects of DM direct detection experiments in the low (< 10 GeV) mass range

- Direct detection of DM
- Searches for low mass DM
 - Bolometers
 - Liquid Xe and Ar detectors
 - Ionisation detectors
 - Bubble chambers
- Searches for distinctive signatures:
 - Annual modulation
 - **Directionality**
- New technologies

Susana Cebrián scebrian@unizar.es

S. Cebrián, FIPs 2020, 31 August 2020

Annual modulation

Distinctive signature in the interaction rate of WIMPs

$$S_{k}(y) = S_{0,k} + \left(\frac{\partial S_{k}}{\partial y}\right)_{y_{0}} \triangle y \cos \omega (t - t_{0}) = S_{0,k} + \left(S_{m,k} \cos \omega (t - t_{0})\right)_{k \text{ energy bin, } y = \sqrt{\frac{3}{2}} \frac{v_{r}}{v_{rms}}$$

- Cosine behaviour
- ✓ 1 year period
- ✓ Maximum around June 2nd
- ✓ Weak effect (1-10%)
- \checkmark Only noticeable at low energy
- ✓ Should have a phase reversal at low energies

No background known to mimic the effect

Nal(TI) scintillator: cheap and robust detectors; new developments to get an ultra-low background and a low energy threshold

A. K. Drukier et al, Phys. Rev. D 33 (1986) 3495 K. Freese et al, Phys. Rev. D 37 (1988) 3388 K. Freese et al, Rev. Mod. Phys. 85 (2013) 1561

Annual modulation: DAMA / LIBRA

At Gran Sasso

DAMA/Nal & DAMA/LIBRA phase 1

DAMA/Nal (1995-2002)

- 9 × 9.7 kg Nal(Tl)
- Produced by St. Gobain
- 7 annual cycles

- 25 × 9.7 kg Nal(Tl)
- 7 annual cycles

DAMA/LIBRA phase2 (2011-2018)

- PMTs replaced → software energy threshold at 1 keV_{ee}
- 6 annual cycles

R. Bernabei et al,

Nucl. Phys. At. Energy 19, 307 (2018) Prog. Part. Nucl. Phys. 114 (2020) 103810

R. Bernabei et al, Eur. Phys. J. C 73 (2013) 2648

The data of DAMA/LIBRA phase1+phase2 favor the presence of a modulation with proper features at **12.9** $_{\sigma}$ CL (2.46 ton × yr) 2-6 keV S_m=(0.0103±0.0008) cpd/kg/keV

Annual modulation: DAMA / LIBRA

Improved **model-dependent corollary analyses after DAMA/LIBRA-phase2**: maximum likelihood procedure to derive **allowed regions** in the parameters' space of each considered scenario (going below 10 GeV) by comparing the measured annual modulation amplitude with the theoretical expectation ($S_{m,k}$)

Also scenarios with preferred electron interaction, preferred inelastic scattering, light DM, asymmetric and symmetric mirror DM

R. Bernabei et al, Nucl. Phys. At. Energy 20 (2019) 317 Prog. Part. Nucl. Phys. 114 (2020) 103810

Annual modulation

No annual modulation signal in other experiments:

XENON100

E. Aprile et al, Phys. Rev. Lett. 118, 101101 (2017)

XMASS

K. Abe et al, Phys. Rev. D 97, 102006 (2018) M. Kobayashi et al, Phys. Lett. B 795 (2019) 308

D.S. Akerib et al, Phys. Rev. D 98, 062005 (2018) CDEX

L.T. Yang et al, Phys. Rev. Lett. 123, 221301 (2019)

S. Cebrián, FIPs 2020, 31 August 2020

Strong **tension** when interpreting DAMA/LIBRA anual modulation signal as DM, even assuming more general halo / interaction models

A MODEL-INDEPENDENT PROOF/DISPROOF WITH THE SAME NaI TARGET IS MANDATORY

29

Annual modulation

S. Cebrián, FIPs 2020, 31 August 2020

Annual modulation: COSINE-100

P. Adhikari et al

Eur. Phys. J. C (2018) 78:107

Eur. Phys. J. C (2018) 78:490

- At Yangyang lab (South Korea)
- 8 Nal(TI) crystals from Alpha Spectra, 106 kg in total
- Inmersed in 2200 I of liquid scintillator G. Adhikari et al
- Threshold at 2 keV_{ee}
- Physics run started in September 2016

SI WIMP search: first 59.5 days Fit for 2-20 keV background + WIMP

G. Adhikari et al, Nature 564 (2018) 83

31 S. Cebrián, FIPs 2020, 31 August 2020

First annual modulation analysis: 1.7 y (crystals 1, 5 and 8 excluded) \rightarrow 97.79 kg.y

0.0083 ± 0.0068 cpd/kg/keV

phase fixed at 152.5 day

Annual modulation: ANAIS

- At Canfranc lab (Spain)
- 9 modules Nal(TI) x 12.5 kg = 112.5 kg
- Built by Alpha Spectra (US)
- Dark matter run since August 2017
- Outstanding light collection of ~15 phe/keV for all modules allowing an energy threshold at 1 keV_{ee}
- Sensitivity to explore the 3σ DAMA/LIBRA region in 5 y, from measured background in 1-6 keV_{ee}

10 cm ancient lead 40 cm neutron shielding

J. Amaré et al, Eur. Phys. J. C 79 (2019) 228; Eur. Phys. J. C 79 (2019) 412 I. Coarasa et al, Eur. Phys. J. C 79 (2019) 233

20 cm lead

Annual modulation: ANAIS

First results on annual modulation: August 2017-August 2019 (2 y)→220.69 kg.y

Least-squares fit to $R(t) = R_0 + R_1 \cdot exp(-t/\tau) + S_m \cdot cos(\boldsymbol{\omega} \cdot (t + \boldsymbol{\phi}))$

Null hypothesis well supported by the χ^2 test Modulation hypothesis best fits for 2-6 and 1-6 keV

 $S_m = -0.0029 \pm 0.0050 \ cpd/kg/keV$ $S_m = -0.0036 \pm 0.0054 \ cpd/kg/keV$ τ fixed from background model **ω** fixed corresponding to 1 year period **φ** fixed to have the cosine maximum in June, 2nd **S**_m fixed to 0 in the null hypothesis and left unconstrained for the modulation hypothesis

Results for **3 y** data to be released soon

J. Amaré et al, Phys. Rev. Lett. 123 (2019) 031301 J. Amaré et al, J. Phys.: Conf. Ser. 1468 (2020) 012014

Directionality

Distinctive signature in the interaction rate of WIMPs

The average direction of the "WIMP wind" through the solar system comes from the constellation of Cygnus, as the Sun is moving around the Galactic center

A **measurement of the track direction** of nuclear recoils could be used to distinguish a DM signal from background events (expected to be uniformly distributed) and to prove the galactic origin of a possible signal

D.N. Spergel, Phys. Rev. D 37 (1988) 1353 S. Ahlen et al, Int. J. Mod. Phys. A 25 (2010) 1 F. Mayet et al., Phys. Rep. 627 (2016) 1

Directionality

Challenge: to reconstruct the track being very short (~1 mm in gas, ~0.1 μ m in solids) for keV scale nuclear recoils

- To register direction (axis, sense) or at least a head-tail asymmetry (by measuring the relative energy loss along the track)
- Daily modulation of the WIMP direction due to the rotation of Farth

 \rightarrow Low pressure (~0.1 atm) gas targets in TPCs with different electron amplification devices and track readouts, mostly based on CF₄ mixtures with ¹⁹F Multi-wire proportional chambers (MWPC) Micro pattern gaseous detectors (MPGDs) **Optical readouts** J.B.R. Battat et al., Phys. Rep. 662 (2016) 1

 \rightarrow Nuclear emulsions

35

M. Schumann, J. Phys. G46 (2019)103003

Directionality

Experiment	Detector	Lab	Size	Ref	
DRIFT	TPC+ Multi-wire Proportional Chamber	Boulby (UK)	1 m ³	J. B. R. Battat et al, Astropart. Phys. 91 (2017) 65	
MIMAC	TPC+Micromegas	Modane (France)	1 m ³ in prep.	Y. Tao et al, arXiv:2003.11812	
NEWAGE	TPC + micro-pixel chamber (μ-PIC)	Kamioka (Japan)		T. Ikeda et al, J. Phys.: Conf. Ser. 1458 (2020) 012042	copper electronod
DMTPC	TPC + optical readout	WIPP (US)	1 m ³ in prep.	C. Deaconu et al, Phys, Rev. D 95 (2017) 122002	

- Measurement of directional nuclear recoils, 3D track observation, head-tail effect confirmed
- Limits for SD WIMP-p interaction

NEWSdm	Nuclear emulsion +	Gran	10 g	N. Agafonova et al,	
	optical readout	Sasso	Proto	(2018) 578	

• Spatial resolution of 10 nm achieved

36 S. Cebrián, FIPs 2020, 31 August 2020

Directionality: CYGNUS

"A multi-site, multi-target Galactic Recoil Observatory at the ton-scale to probe DM below the neutrino floor and measure solar neutrinos with directionality" S.E. Vahsen et al., arXiv:2008.12587v1 [physics.ins-det]

Proposals for CYGNUS detectors in 5 labs:

- Different gas mixtures (higher, lower density): SF₆:He, CF₄
- Threshold at <1 keV_{ee}
- Volumes from 10 to 1000 m³

S.E. Vahsen et al., arXiv:2008.12587

Status and prospects of DM direct detection experiments in the low (< 10 GeV) mass range

- Direct detection of DM
- Searches for low mass DM
 - Bolometers
 - Liquid Xe and Ar detectors
 - Ionisation detectors
 - Bubble chambers
- Searches for distinctive signatures:
 - Annual modulation
 - Directionality
- New technologies

Susana Cebrián scebrian@unizar.es

New technologies

To explore the **new DM landscape** with well-motivated candidates with eV-to-GeV masses through interactions with **advanced**, **ultra-sensitive detectors** based on recently developed technologies and novel ideas

New technologies

 Scintillating Bubble Chambers: extreme electron rejection and simple instrumentation of a bubble chamber and event-byevent energy resolution of a liquid scintillator Technique established for a 30 g xenon bubble chamber
D. Baxter, et al., Phys. Rev. Lett. 118, 231301 (2017)
SBC Collaboration: LAr chamber (10 kg) in preparation in

Fermilab, to operate at SNOLAB in 2023

ejection nt-byr in Dilution refrigerator

 HeRALD Helium Roton Apparatus for Light Dark Matter:
superfluid ⁴He target + low temperature calorimeters as sensors (TES) to measure photons and quasiparticles (heat) by quantum evaporation

S.A. Hertel et al, Phys. Rev. D 100, 092007 (2019)

• **SnowBall:** using **supercooled water**, an incoming particle triggers crystallization of purified water. Camera for image acquisition. Tested with neutrons at -20°C, insensitive to electron recoils

M. Szydagis et al, arXiv:1807.09253

New technologies

- Diamond detectors: high purity lab-grown diamond crystal as target outfitted with cryogenic phonon and charge readout, to be sensitive to both NR and ER from dark matter scattering at MeV
 - + C lighter than other semiconductor materials
 - + Low noise (sub-eV theshold)

N. Kurinsky et al, Phys. Rev. D 99, 123005 (2019)

- Paleo-detectors: persistent traces left by DM interaction in ancient minerals are searched for. Different readout scenarios considered to achieve nm resolution.
 - + Profiting from a large integration time

Mineral optimization: to supress cosmogenic background, neutrons from ²³⁸U contamination

A. K. Drukier et al, Phys. Rev. D 99, 043014 (2019)

New technologies: recoil direction

• **Crystal defect spectroscopy:** WIMP-induced nuclear recoils in a diamond target would create an observable damage trail in the crystal that alters the strain pattern

+ Large target mass (a solid-state detector), ultra-fine spatial resolution (nm-scale)

S. Rajendran, Phys, Rev. D 96 (2017) 035009

 DNA strand detector: DNA strands mounted onto a nm-thick gold foil could be severed by a recoiling gold atom kicked out by a WIMP.
Biological techniques could allow to identify position of each severing event.

A.K. Drukier et al, Int J. Mod. Phys. A 29 (2014) 1443007

• **Planar targets (Graphene):** planar targets make easier the determination of recoil direction (avoiding multiple interaction in bulk targets).

S.Y. Wang, Eur. Phys. J. C 79 (2019) 561

PTOLEMY-G: Graphene FETs in stacked planar arrays with tunable meV band gaps, offering single-electron sensitivity

E. Baracchini et al, arXiv:1808.01892

• Anisotropic scintillators (ZnWO₄), columnar recombination in LAr (ReD program), carbon nanotubes,...

Summary

Impressive improvement in the best limits set for DM-nucleus SI interactions

Dark Matter Searches: Past, Present & Future

Summary

- For the direct detection of **low mass DM** best limits, on SD and SI interactions with nuclei and for electron scattering, come from several experiments based on very different detection techniques:
 - Solid-state cryogenic detectors: scintillating bolometers, small mass Ge and Si crystals.
 - Liquid noble detectors (Xe, Ar): operated in S2 only mode (charge collection).
 - Purely ionization detectors: Ge, CCDs, gas detectors.
 - Bubble chambers.

Use of light targets, achieving extremely **low energy thresholds** and/or searching for **different interaction channels** (enhancement by Migdal effect) are strategies followed and **new technologies** are in development.

- Important results (even if still with low significance) from Nal(TI) experiments (COSINE-100, ANAIS-112) to solve the long standing conundrum of the DAMA/LIBRA annual modulation result.
- Construction of a DM detector with directional sensitivity is underway to prove the galactic origin of a possible signal Low-pressure TPCs with different readouts and nuclear emulsions explored.