Axions/ALPs: overview of experimental approaches in the low mass range

Igor G. Irastorza Center for Astroparticle and High Energy Physics (CAPA) University of Zaragoza

FIPS 2020 - Feebly Interacting Particles 2020, 31 Aug – 4 Sep 2020, CERN/Online

Why axions?

- Most compelling solution to the Strong CP problem of the SM
- Axion-like particles (ALPs) predicted by many extensions of the SM (e.g. string theory)
- Axions, like WIMPs, may solve the DM problem for free. (i.e. not ad hoc solution to DM)
- Astrophysical hints for axion/ALPs?
 - Transparency of the Universe to UHE gammas
 - − Stellar anomalous cooling \rightarrow g_{aγ} ~ few 10⁻¹¹ GeV⁻¹ / m_a ~few meV ?
- Relevant axion/ALP parameter space at reach of current and near-future experiments
- Still too little experimental efforts devoted to axions

Axion/ALP searches motivation

Detection of axions

Large complementarity among categories	Sc	ource	Experiments	Model & Cosmology dependency	Technology
	Relic axions		ADMX, HAYSTAC, CAPP, MADMAX, BRASS, ORGAN, RADES, QUAX, CASPEr, SHAFT, ABRA, DM-Radio,	High	New ideas emerging, Active R&D going on,
	Lab axions		ALPS, JURA, OSQAR, PVLAS, ARIADNE,	Very low	Ready for large scale experiment
	Solar axions		SUMICO, CAST, (Baby)IAXO	Low	Ready for large scale experiment

Laboratory axions

Light-shining-through-wall (LSW)

ALPS experiment

 10^{-6}

 10^{-7}

 $|_{\eta\gamma}|$ (GeV⁻¹)

ALP II under construction (resonant, 10+10 magnets,.

Possible future extrapolation: JURA (& also STAX with MW)

parameter	scaling	ALPS I	ALPS IIc	sens. gain 21	
BL (total)	$g_{a\gamma} \propto (BL)^{-1}$	22 Tm	468 Tm		
PC built up ($P_{\text{laser,eff.}}$)	$g_{a\gamma} \propto \beta_{\rm PC}^{-1/4}$	1 (kW)	150 (kW)	3.5	
rel. photon flux \dot{n}_{prod}	$g_{\mathrm{ay}} \propto \dot{n}_{\mathrm{prod}}^{-1/4}$	1 (532 nm)	2 (1064 nm)	1.2	
RC built up $\beta_{\rm RC}$	$g_{ay} \propto \beta_{ m RC}^{-1/4}$	1	40,000	14	
detector eff. DE	$g_{a\gamma} \propto D E^{-1/4}$	0.9	0.75	0.96	
detector noise DC	$g_{\rm ay} \propto D C^{1/8}$	$1.8 \cdot 10^{-3} s^{-1}$	$10^{-6} \mathrm{s}^{-1}$	2.6	
combined				3082	

Also: OSQAR@CERN, CROWS@CERN, GammeV & REAPR @ Fermilab, US, BMV @ Toulouse,...

also polarization experiments: PVLAS @ Ferrara, ...

ALPS-I

OSOAE

Future: VMB@CERN

FIPS 2020, CERN

$$\begin{array}{c} \underline{S} & 10^{-8} \\ 10^{-9} \\ 10^{-10} \\ 10^{-10} \\ 10^{-11} \\ 10^{-11} \\ 10^{-12} \\ 10^{-12} \\ 10^{-13} \\ 10^{-9} \\ 10^{-9} \\ 10^{-8} \\ 10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-5} \\ 10^{-4} \\ 10^{-4} \\ 10^{-3} \\ 10^{-2} \\ m_a (eV) \end{array}$$

Any Light Particle Search @ DESY: ALPS I concluded in 2010

Axion-mediated macroscopic forces

Axions could be detected as short-range deviation of gravity... (but traditionally though without enough sensitivity to QCD axions) Recently proposed: ARIADNE experiment Short-range force by NMR technique

Sensitive to (products of) fermion couplings Good prospects for sub-meV axion (assuming CP-violating effects not far from current bound on θ)

Dark matter axions

Detecting DM axions: "haloscopes"

ADMX

- Leading haloscope
 - Many years of R&D
 - First results >10 years ago.
- Sensitivity to few μeV proven
- Now producing new results:
 - First data down to DFSZ coupling (2.7 to 3.3 μeV)...
- Current program will surely cover 1-10 μeV with high sensitivity (i.e. reaching even pessimistic coupling).
- What about higher masses?

Higher-m_a haloscopes

• Problematic:

higher $m_a \rightarrow \text{lower V} \rightarrow \text{lower sensitivity}$

$$F \sim \rho_a^2 g_{a\gamma}^4 m_a^2 B_e^4 V^2 T_{\rm sys}^{-2} |\mathcal{G}|^4 Q$$

- R&D to go to:
 - Higher B magnets –
 - Larger instrumented volumes
 - Lower noise sensors –
 - Higher Q cavities

Very active R&D in many groups!

- More powerful magnets
 - Multicell structures:
 - Phase-matched
 - Filter-like
 - Dielectric loading
 - Photonic bandgap
 - ...
- SC deposited cavities

 \rightarrow 2008.10141

FIPS 2020, CERN

Igor G. Irastorza / Universidad de Zaragoza

12

Higher-m_a haloscopes

• Problematic:

higher $m_a \rightarrow \text{lower V} \rightarrow \text{lower sensitivity}$

$$F \sim \varrho_a^2 g_{a\gamma}^4 m_a^2 B_e^4 V_{\uparrow}^2 T_{\rm sys}^{-2} |\mathcal{G}|^4 Q$$

- R&D to go to:
 - Higher B magnets –
 - Larger instrumented volumes
 - Lower noise sensors –
 - Higher Q cavities

- Squeezed state to reduce noise beyond quantum limit
- Quantum information technologies for axion search
- First experimental application HAYSTAC 2008.01853:
 - factor x2 effective faster scan rate
 - **17.14-17.28** μ eV scanned down to **1.38** x $g_{a\gamma}^{KSVZ}$

Higher-m_a haloscopes

- HAYSTAC @ Yale: started as ADMX test bed for new ideas.
 - First results released in 2018 (1803.03690)
 - Very recent: first result with squeeze states very recent (2008.01853)
- CAPP: recently created "Center for Axion and Precision Physics" at South Korea
 - Recent first results released CAPP-PACE
 - Also multicell setup (pizza cavity)
 - + a lot of R&D lines
- ADMX-Sidecar: small demonstrator adjacent to main ADMX (PRL121)
- Many other projects exploring new cavity designs:
 - QUAX @ LNL: SC coated cavity. Also setups sensitivity to g_{ae} coupling
 - RADES & CAST-CAPP @ CERN
 - Also ORGAN in Australia

Haloscopes - current results

Beyond haloscopes... Dish antennas & dielectric haloscopes

• Dish antennas:

No resonance, but large area possible...

Realistic sensitivity limited, but boost possible with dielectric multilayer

– plasmas haloscopes... (arXiv:1904.11872)

FIPS 2020, CERN

Igor G. Irastorza / Universidad de Zaragoza

Haloscopes – future prospects

Towards lower m_a

 Large V haloscopes are technologically simpler, but expensive → huge magnet needed. Use of existing magnets could be an effective strategy

- DM-induced spin precession (NMR) → CASPER
 - Sensitive to gluon term & fermionic couplings

Igor G. Irastorza / Universidad de Zaragoza

Solar axions

Solar Axions

Axion helioscopes

CAST experiment @ CERN

- Decommissioned LHC test magnet (L=10m, B=9 T)
- Moving platform ±8°V ±40°H (to allow up to 50 days / year of alignment)
- 4 magnet bores to look for X rays

- 3 X rays detector prototypes used.
- X ray Focusing System to increase signal/noise ratio.

Latest CAST limit

•

BabyIAXO

- Intermediate experimental stage before IAXO:
 - **Prototype** of final IAXO system
 - Relevant physics

- Approved by DESY PRC last year.
- Rely on CERN magnet SC expertise & experience with CAST
- Commissioning expected by 2023

Helioscopes & astrophysics

Overall picture (for $g_{a\gamma}$)

- Helioscopes (IAXO) will probe ALP models motivated by astrophysics
 - Haloscopes will soon probe 1-10 μeV QCD axions
 - Promising new haloscopes R&D to substantially expand explorable mass range

- Helioscopes (IAXO) will probe meV – eV QCD axion models
- ... and most of the region hinted by stellar cooling

٠

In overall, a large fraction of the ALP parameter space may be explored in the future

Conclusions

- Experimental search for axions \rightarrow attracting new interest
- Increasing efforts: experimental (& phenomenology/theory)
 - Singular combination of technologies: magnets, RF, x-ray astro, low noise, ...
- Consolidation of classical detection lines: ADMX, CAST, ALPS,...
 - ADMX and CAST have firstly probed interesting (small) fraction of par space.
 - Helioscopes: next gen IAXO clear step ahead
 - Haloscopes: ADMX, CAPP + vigorous multiple R&D approach
- New ideas to tackle new regions
 - Dielectric haloscopes (MADMAX), "DM-radios", NMR...
- Large fraction of parameter space at reach of near-future experiments
 - chances of discovery!

Good times for axions... stay tuned

Backup slides

Axion models

- Conventional QCD axion models lie on the "yellow band"
 - KSVZ, DSFZ benchmarks
- Outside the band typically ALPs
- BUT a lot of "model building" activity in recent years, leading to QCD axion models outside the conventional band...
 - Normally populating higher $g_{a\gamma}$.
 - Very interesting for experiments!

Enhanced Photon-Axion coupling

Wider target for QCD axion searches

P. Agrawal, ESPP 2019 Granada

Axions as cold dark matter

Axion realignment... (AR)

 \rightarrow Right axion DM density is possible for a wide range range of masses

 10^{-9}

Axion phenomenology

- Some phenomenology depends on the "axion model", e.g.
 - KSVZ axions are "hadronic axions" (no coupling with leptons at tree level)
 - DFSZ axions couple to electrons

Sources of axions

- Photon-ALP conversion in strong magnetic fields (axionphoton coupling)
- ALP fields from macroscopic bodies (fermionic couplings)

Cosmological axions: axion realignment

As the Universe cools down below T_{QCD} , space is filled with low energy axion field fluctuations \rightarrow act as cold dark matter

Their density depends on the initial value of $\langle a_{phys} \rangle$ ("misalignment angle") which:

Unique (but unknown) for all visible Universe in pre-inflation models Effectively averaged away in post-inflation models $\langle \theta_a^2 \rangle = \pi^2/3$

Cosmological axions: topological defects

But inflation may "wipe out" topological defects... Did inflation happen before or after the creation of defects (PQ transition) ?

pre-inflation or post-inflation scenarios

Computation of axion DM density from defect decay is complicated (→ big uncertainty)

Astrophysical hints for axions

• Gama ray telescopes like MAGIC or HESS observe HE photons from very distant sources...

Astrophysical hints for axions

- Most stellar systems seem to cool down faster than expected.
- Presence of axions/ALPs offer a good joint explanation (M. Giannotti et al. JCAP 1710 (2017) 010, arXiv:1708.02111)

Astrophysical hints for axions

IAXO & stellar cooling hints

- IAXO can detect "ABC" solar axions (i.e. non-hadronic, g_{ae}-mediated)
- Boost in sensitivity for models featuring g_{ae} coupling.
- Will probe QCD axion models invoked to solve all stellar cooling anomalies

Most detection strategies rely on the axion-photon Axion detection strategies conversion

	$ \rightarrow $								
Detection method	$g_{a\gamma}$	g_{ae}	g_{aN}	$g_{A\gamma n}$	$g_{a\gamma}g_{ae}$	$g_{a\gamma}g_{aN}$	$g_{ae}g_{aN}$	$g_N \bar{g}_N$	Model
									dependency
Light shining through wall	×								no
Polarization experiments	Х								no
Spin-dependent 5th force			×				×	×	no
Helioscopes	Х				×	×			Sun
Primakoff-Bragg in crystals	X				×				Sun
Underground ion. detectors	×	×	×			×	×		Sun^*
Haloscopes	Х								DM
Pick up coil & LC circuit	\times								DM
Dish antenna & dielectric	X								DM
DM-induced EDM (NMR)			×	×					DM
Spin precession in cavity		×							DM
Atomic transitions		×	×						DM

Table 3: List of the axion detection methods discussed in the review, with indication of the axion couplings (or product of couplings) that they are sensitive to, as well as whether they rely on astrophysical (axions/ALPs are produced by the Sun) or cosmological (the dark matter is made of axions/ALPs) assumptions. *Also "DM" when searching for ALP DM signals, see section 6.2

Polarization experiments

- Summary of current status and future prospects...
- A diverse experimental landscape has emerged with potential to cover a substantial fraction of parameter space
- Caution: many of these prospects still rely on a prior succesful R&D phase
- Caution: Green areas rely on axion as DM hypothesis...

Buffer gas for higher masses

Coherence condition (qL << 1) is recovered for a narrow mass range around m_{γ}

IAXO technologies – magnet

IAXO x-ray optics

- X-rays are focused by means of grazing angle reflection (usually 2)
- Many techniques developed in the x-ray astronomy field. But usually costly due to exquisite imaging requirements

IAXO low background MM detectors

- Goal background level for IAXO:
 - $10^{-7} 10^{-8} c \text{ keV}^{-1} cm^{-2} s^{-1}$
- Already demonstrated:
- ~8×10⁻⁷ c keV⁻¹ cm⁻² s⁻¹ (in CAST 2014 result)
 - 10⁻⁷ c keV⁻¹ cm⁻² s⁻¹ (underground at LSC)

- Active program of development.
- IAXO-D0 test-platform to explore
 background sources and improve levels

Additional detector technologies for IAXO

Ingrid detectors (U. Bonn):

- Micromegas on top of a CMOS chip (Timepix)
- Very low threshold (tens of eV)
- Tested in CAST

MMC detectors (U. Heidelberg):

- Extremely low threshold and energy resolution (~eV scale)
- Low background capabilities under

- Transition Edge Sensors (TES)
- Si- detetors

IAXO & axion cosmology

- Axion post-inflation mass window overlaps with astro window
 - Uncertainty in topological defect decay is large (Gorghetto et al 2018)
 - NDW>1 models (Saikawa, Ringwald 2016)
- Also:
 - If axions only subdominant DM component, axion mass moves to higher values.
 - "ALP miracle" (ALP inflation + DM) models
 @ 0.01 to 1 eV
 - EDGES anomaly interpretation with DM axions at 0.01-1 eV range
- IAXO will probe interesting DM axion & ALP models

Post-discovery physics

- A positive signal in BabyIAXO will be seen >100x stronger in IAXO
- With sufficient statistics and precision detectors IAXO can determine axion model parameters:
 - Axion mass: "Weighing" the solar axion" [Dafni et al. arXiv:1811.09278]
 - Axion couplings: "Distinguishing axion models with IAXO" [Jaeckel et al. arXiv:1811.09278]
- IAXO collaboration is developing high-precision ("postdiscovery") detectors (e.g. MMCs or TES)

Detecting DM axions: "haloscopes"

Data taking proceeds by scanning small (1/Q) mass steps and taking limited data a each step

• Figure of merit:

$$F \sim \varrho_a^2 g_{a\gamma}^4 m_a^2 B_e^4 V^2 T_{\rm sys}^{-2} |\mathcal{G}|^4 Q$$

(proportional to "time needed to scan a given mass range")

CULTASK @ CAPP

- CAPP: recently created "Center for Axion and Precision Physics" at South Korea
- Main goal to "build a large axion DM experiment in Korea"
- Many R&D lines ongoing:
 - Ultrahigh field superconducting magnets
 - Superconducting films to get high G cavities
 - Low noise sensors (SQUIDs)
 - New cavity designs & multi-cavity phase locking schemes

Directional effects

- DM directionality would be a powerful signature to confirm a putative signal
- Long aspect-ratio cavities should show a directional dependence if L > IdeBroglie
- Dish antennas: small parallel component proportional to axion momentum
 - pixelised detector at the focal point could image velocity distribution

An "axion astronomy" era would follow a discovery

Magnetized dish antenna

- DM field + B field + boundary condition in the dish
 → photon emission normal to surface
- No resonance (loss a factor Q) BUT may be compensated with very large areas ?

Dielectric haloscopes

- Some "mild" resonance ٠
 - Concept between a haloscope and a dish antenna
 - It needs tuning! (challenging)
- Relevant sensitivity in the 10^{-4} eV ballpark for a $\sim m^3$ • 10T experiment (80 disks)

Igor G. Irastorza / Universidad de Zaragoza

 $f_a \, [\text{GeV}]$

 $m_a \, [eV]$

 10^{-4}

54

 10^{-5}

DM-induced atomic transitions

- DM can induce atomic excitations equal to m_a.
- Sensitive to axion-electron and axion-nucleon coupling
- Zeeman effect \rightarrow create atomic transitions tunable to m_a
- Detection of excitation via pump laser
- AXIOMA \rightarrow recent project aiming at an implementation

Relevant sensitivity for $m_a \sim 10^{-4} \text{ eV}$ seems possible for kg-sized samples

