Towards an Amorphous Selenium CMOS Imager for a $0\nu\beta\beta$ Search

Tuesday, 26 May 2020 11:54 (18 minutes)

⁸²Se is an interesting candidate for a $0\nu\beta\beta$ search due to its high $Q_{\beta\beta}$ (2998 keV) value, which is above many natural radioactive backgrounds, and relatively long $T_{0.5}^{2\nu}$ (10^{20} yrs). We have proposed a tower of low noise pixelated CMOS detectors with a 200 μ m layer of amorphous selenium (a-Se) as a $0\nu\beta\beta$ experiment. The high spatial resolution of a pixelated detector improves background rejection from Compton scattering and single β decays and highlights the desired topology of two β s from a single vertex. We will present results on our initial investigation into the resolution of a-Se using a single pixel detector with ~ 100 keV γ -rays and the impact of this study on the energy resolution in the $Q_{\beta\beta}$ range of selenium. Additionally, we will discuss our work on depositing a-Se on the existing TopMetal-II⁻ chip (72x72 pixels) and moving towards a full pixelated CMOS detector.

Funding information

Primary author: PIERS, Alexander (University of Washington)
Co-authors: CHAVARRIA, Alvaro (Princeton University); LI, Xinran (Princeton University)
Session Classification: Sensors: Solid-state calorimeters

Track Classification: Sensors: Solid-state calorimeters