Contribution ID: 37 Type: Poster

Development of Structured Scintillator Tiles for High-Granularity Calorimeters

Monday, 25 May 2020 23:53 (5 minutes)

In order to improve the jet energy resolution and particle identification of future high-energy physics experiments, the calorimeters of the detector systems need a fine 3-D segmentation. Depending on the size and technology, millions of individual channels consisting of a photosensor coupled to a scintillator tile have to be assembled. The usage of structured plastic scintillators with optically separated segments simplifies the mass production. We present the design, production, and performance of a 36cm x 36cm scintillator tile divided into 144 segments matching the geometry of the SiPM-based calorimeter frontend developed by the CALICE collaboration. This approach features a full integration of scintillators, sensors, and electronics. For several prototypes the light yield of the channels and an upper limit for the optical crosstalk have been measured in a cosmic-ray test stand. Conclusions from the development process on the optimum design and production technique are drawn.

Funding information

This work is supported by the Cluster of Excellence "Precision Physics, Fundamental Interactions, and Structure of Matter" (PRISMA+, Project ID 39083149) funded by the German Research Foundation (DFG)

Primary author: WEITZEL, Quirin (PRISMA Detector Laboratory, Johannes Gutenberg University Mainz)

Co-authors: BERNHARD, Peter (PRISMA Detector Laboratory, Johannes Gutenberg University Mainz); BROGNA, Andrea (PRISMA Detector Laboratory, Johannes Gutenberg University Mainz); BÜSCHER, Volker (Institute of Physics and PRISMA+ Cluster of Excellence, Johannes Gutenberg University Mainz); CHAU, Phi (PRISMA Detector Laboratory and Institute of Physics, Johannes Gutenberg University Mainz); DEGELE, Reinhold (Institute of Physics, Johannes Gutenberg University Mainz); MASETTI, Lucia (Institute of Physics and PRISMA+ Cluster of Excellence, Johannes Gutenberg University Mainz); MPOUKOUVALAS, Anastasia (PRISMA Detector Laboratory, Johannes Gutenberg University Mainz); RITTER, Sebastian (PRISMA Detector Laboratory and Institute of Physics, Johannes Gutenberg University Mainz); ROBLES MANZANO, Maria (PRISMA Detector Laboratory and Institute of Physics, Johannes Gutenberg University Mainz); ROSMANITZ, Anna (PRISMA Detector Laboratory and Institute of Physics, Johannes Gutenberg University Mainz); SCHMITT, Christian (Institute of Physics and PRISMA+ Cluster of Excellence, Johannes Gutenberg University Mainz)

Presenter: WEITZEL, Quirin (PRISMA Detector Laboratory, Johannes Gutenberg University Mainz)

Session Classification: Poster

Track Classification: Experiments: Calorimeters