
Processing farm control
(EPN control)

M. Al-Turany, SDE Group, GSI/IT

1

● One has to make the entire cluster state available for the
experiment control system and not single process one

Controlling the processing farm with FairMQ devices:

2

Configure Initialize Start Stop

Exported cluster state machine

EPNs internal state machine (FairMQ)

The process controller, should:

● Have the knowledge about the full topology of connected
FairMQ devices.

● Launch/setup the run-time environment and the FairMQ devices
● Drive the device state machines in lock-step across the full

topology
● Push the device configuration,
● Monitor (some aspects of the application’s) operation and

handling/reporting (some) error cases.

Resources

EPNs
(example)

DDS session
(owns DDS topology)

EPNs
(example)

DDS session
(owns DDS topology)

EPNs
(example)

DDS session
(owns DDS topology)

Processing nodes

Service node
ECS

commands:
init

config
start
stop
term
down

control-client

translates commands
to create/shutdown RMS

session
via

and
control FairMQ devices

via

to change and query
device states

control-server

FairMQ
processing topology

plugin FairMQ device
(started by DDS Agent)

fair::mq::sdk::Topology

RMS_api

.

.

.

.

.

.

RMS

Controller Design

4

Other services, e.g: CCDB,
Data transfer, etc …

Resources
(example)

EPNs
(example)

DDS session
(owns DDS topology)

EPNs
(example)

DDS session
(owns DDS topology)

EPNs
(example)

DDS session
(owns DDS topology)

Processing node
(example)

service node
(example)ECS

(example)

gRPC

commands:
init

config
start
stop
term
down

control-client

translates commands
to create/shutdown DDS

session
via

and
control FairMQ devices

via

to change and query
device states

control-server

DDS session
(owns DDS topology)

dds plugin
FairMQ device

(started by DDS Agent)
fair::mq::sdk::Topology

dds::tools_api

.

.

.

.

.

.

dds::intercom_api::CCustomCmd

dds::tools_api::CSession

Controller Example (DDS based)

5

One DDS session for all processing nodes

DDS-control
An example of how to control/communicate with a system backed by DDS
and FairMQ.

https:// github.com/ FairRootGroup/ DDS-control

FairMQ State Machine & Example ECS Command Mapping
ECS
command DDS/FairMQ actions

init DDS: Create session, submit agents, activate topology -> devices go in Idle state

configure Devices: InitDevice->CompleteInit->Bind->Connect->InitTask

start Devices: Run

stop Devices: Stop

term Devices: ResetTask->ResetDevice->End

down DDS: Shutdown session

7

libFairMQ_SDK.so

find_package(FairMQ COMPONENTS sdk)

Then link against
FairMQ::SDK

#include <fairmq/SDK.h>

Device per
collection Collections Devices INIT CONFIG START STOP TERM DOWN

Sept 2019 12 300 3600 -- 38.1 5.9 5.4 24.0 --
Oct 2019 12 300 3600 -- 6.0 0.9 0.8 3.7 --
Nov 2019 12 300 3600 26.6 4.6 0.9 0.8 3.3 1.7

Improvement in the DDS implementation
compared to September

Sep 19: One agent per Task
Oct 19: One agent per node
Nov19: Multiple agent per node (one agent per collection in this test)

DDS Based controller

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1280 1920 3840 7440 14880 24800

Time vs Number of devices

INIT CONFIG START STOP TERM DOWN

INIT
Start DDS session → Submit agents using SLURM plugin
→ Activate topology

CONFIG InitDevice → CompleteInit → Bind → Connect → InitTask
START Run
STOP Stop
TERM ResetTask → ResetDevice → End
DOWN Shutdown DDS session

■ 60 nodes, 64 physical cores, 256 GB
■ Slurm as RMS
■ DDS-Slurm plugin

■ gRPC `1.23.0
■ DDS `2.5-87`
■ Boost `1.70.0`
■ FairMQ `1.4.9` + fmq_sdk_dds.patch

What is new!

PMIx started 2017

PMIx (Process Management Interface for Exascale)

● Originally developed and distributed as part of MPICH, has historically
been used as a means of exchanging wireup information needed for
interprocess communication and deployment of processes

○ Distributed key/value store for data exchange
○ Asynchronous events for coordination
○ Enable interactions with the resource manager

● PMIx also covers: Resource allocation, process/job mgmt
(creation/deletion/monitoring), system information, error notifications

● PMIx provides server, tool, and client APIs

https://github.com/pmix/pmix
https://github.com/pmix/pmix-standard

https://github.com/pmix/pmix
https://github.com/pmix/pmix-standard

EPN Resources

EPNs
(example)

DDS session
(owns DDS topology)

EPNs
(example)

DDS session
(owns DDS topology)

EPNs
(example)

DDS session
(owns DDS topology)

EPN
(example)

EPN service
node

(example)ECS

gRPC

commands:
init

config
start
stop
term
down

control-client

translates commands
to create session

Via PMIx/Slurm

and
control FairMQ devices

via

to change and query
device states

control-server

DDS session
(owns DDS topology)

PMIx plugin FairMQ device
(started by DDS Agent)

fair::mq::sdk::Topology

PMIx::tools_api

.

.

.

.

.

.

PMIx::tools

One DDS Session for all EPNs.

Controller Example (PMIx based)

14

PMIx based controller, to do:
● Implement a PMIx based command transport

(PMIx_Notify_event()...) in fair::mq::sdk::Topology

○ Implement dds-session, dds-submit, dds-topology
counterparts based on PMIx_Tool_*(),
PMIx_Allocation_request(), PMIx_Job_control(), PMIx_Spawn(),
PMIx_Query()

● A production-ready PMIx support would need at least another
2-3 man-months

Controller configure (s) start (s)

PMIx based 1.5 0.03

DDS Based 4.6 0.7

Comparison
Preliminary

Run with 3840 Devices

What need to be defined to implement the EPN
controller for ALICE:

● A common dictionary (objects, states and methods).

● A coherent error handling across the different boundaries
has to be agreed and implemented.

● Interfaces to CCDB, calibrations, storage …etc.

