

Energy deposition studies for secondary ion beams in FCC-hh

FCC collimation design meeting #24

J. R. Hunt, F. Cerutti - EN/STI-BMI With support from: J. Molson & R. Bruce

Contents

- Introduction
- Energy deposition simulations
- First case in DS
- Matching section
- Multiple collimator tests in DS
- Outlook

Background

Ultra-peripheral electromagnetic interactions in heavy nucleus-nucleus collisions:

Change of magnetic rigidity (charge to mass ratio) results in secondary beams emerging from IP

Background

Beam power proportional to luminosity and energy:

	Unit	Initial		Nominal	
Operation mode	-	Pb-Pb	p-Pb ^a	Pb-Pb	p-Pb ^a
Beam energy	[TeV]	4100	50	4100	50
Centre-of-mass energy per nucleon pair	[TeV]	39.4	62.8	39.4	62.8
No. of bunches	-	2760		5400	
Bunch spacing	[ns]	100		50	
No. of particles per bunch	$[10^8]$	2	164	2	164
Transverse normalised emittance	[µm.rad]	1.5^{b}	3.75^{b}	1.5^{b}	3.75^{b}
Stored energy per beam	[MJ]	362		709	
Stored energy per beam at injection	[MJ]	24		47	
β-function at the IP	[m]	1.1		0.3	
Number of IPs in collision	-	1 or 2		1 or 2	
Initial luminosity	$[10^{27} \text{cm}^{-2} \text{s}^{-1}]$	34	2800	248	20400
Peak luminosity ^c	$[10^{27} \text{ cm}^{-2} \text{s}^{-1}]$	80	13300	320	55500
Integrated luminosity ^d (1 experiment)	[nb ⁻¹ /run]	35	8000	110	29000
Integrated luminosity ^d (2 experiments)	[nb ⁻¹ /run]	23	6000	65	18000
Total cross-section	[b]	597	2	597	2
Peak BFPP beam power	[kW]	19	0	75	0

 $P = \sigma L E$

$$L_{LHC} = 6 \times 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$$

 $L_{FCC} = 320 \times 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$

 $\sigma_{\text{BFPP}} = 344 \times 10^{-27} \text{ cm}^2$ $\sigma_{\text{EMD1}} = 119 \times 10^{-27} \text{ cm}^2$ $\sigma_{\text{EMD2}} = 37 \times 10^{-27} \text{ cm}^2$

BFPP: 72 kW EMD1: 25 kW EMD2: 7.7 kW

cm

ames.hunt@cern.ch

FCC collimation design meeting #24

СШ

cm

СIJ

james.hunt@cern.ch

FCC collimation design meeting #24

cm

BFPP Results – Dispersion Supressor

Guide value 1 – 2 kW per jaw!

james.hunt@cern.ch

25/11/19

FCC collimation design meeting #24 11

BFPP Results – magnetic coils

- Scoring on coils with 3 mm resolution
- Guide value for peak power density on coils: 70 – 100 mW/cm³
- Results for single beam

EMD1 Hits – TCLD.8

Beam is split, as a result hits are smeared across surface.

(~93% of beam on this collimator)

james.hunt@cern.ch

EMD1 Hits – TCLD.8

EMD1 Hits – TCLD.8

EMD1 BFPP Comparison – TCLD.8

james.hunt@cern.ch

Adding new collimators before long drifts "TCI.4, TCI.5, TCI.6"

james.hunt@cern.ch

Adding new collimators before long drifts "TCI.4, TCI.5, TCI.6"

james.hunt@cern.ch

New collimator - TCI

New "TCI" collimator

Active material: Molybdenum graphite (MoGR) $\rho = 2.55 \text{ g/cm}^3$

BFPP touches split between TCI.6 and TCLD.8

james.hunt@cern.ch

MoGR Power Load

james.hunt@cern.ch

Peak power density in Coils (MoGR Matching Section Collimator)

Matching Section Material Change

james.hunt@cern.ch

Back to DS... 2 collimators: Copper & Copper

james.hunt@cern.ch

Back to DS... 2 collimators: MoGR and Copper

Outlook

- Seems necessary to extend collimator length
- Combination of lower density material and higher density material?
 - Try Copper-Diamond

Density of Copper: Density of Copper-Diamond: Density of MoGR: Density of Tungsten: 8.96 g/cm³ 5.4 g/cm³ 2.55 g/cm³ 18 g/cm³

2 m + long collimator, 2 materials CuDiamond & Cu

Thanks for listening

120 140 160

100

50

0

-60 -40

-20 0 20 40 60 80 100