Ideas for beam distributions

A. Lasheen, M. Schwarz

Idea

- Uniform handling of creating and fitting profiles
- Distribution objects (Gaussian, BinominalAmplitudeN, ...) used to compute analytical profiles (integral, spectrum,...)
 - Consistency for different type of bunch lengths (RMS, FWHM, ...)
- Fit routines should have common (time_array, data_array) call signature
 - Output should be usable to construct distribution objects
- Development on <u>BLonD_common/tree/fitting_overhaul</u>
 - Fitting routines in fitting/profile.py
 - Analytic profiles in interfaces/beam/analytic_distribution.py
 - Global default parameters (BLonDrc) in devtools/
 - **Examples in** ____EXAMPLES/fitting/

Distribution object

- Calling signatures for all analytic distributions:
 - Distribution([parameters]) → creates distribution object from these parameters and computes parameters like RMS, FWHM, full_bunch_length
 - Distribution([parameters], time_array=t_data) → returns profile evaluated at t_data
 - Distribution([None], time_array=t_data, data_array=y_data) → performs a fit of the profile to (t_data, y_data) and creates a distribution object from the fit parameters
 - Distribution([parameters], time_array=t_data, data_array=y_data) → as before, but uses parameters as initial guess for fit
- Methods to compute profile, integral, and spectrum of distribution
- Bunch lengths RMS, FWHM, full_bunch_length implemented as properties to ensure that all update if one of them changes (consistency!)
- Uses BLonDrc parameters to ensure consistency between return values from fit functions and distribution objects

• Currently Gaussian, and BinominalAmplitudeN are implemented (and covered with unittests!)

In future:

. . .

- Implement distribution and phase_space methods to compute profile in action (or Hamiltonian) and phase space distribution in dt, ΔE
 - needed to create matched beams and ensures consistency between phase space and profile

Comments?

4