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Quantum Computing



Lecture 3: Basic
algorithms

 Quantum Paralelism

 Quantum Fourier Transform

 Amplitude amplification

 Phase estimation



Quantum Paralelism
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 The idea behind quantum paralelism is that you can apply a function to all

the states in a superposition in just one step

 Let Uf an operator that implements the function f such that:

𝑈𝑓 |𝑥, 𝑦 > = |𝑥, 𝑓(𝑥) ⊕ 𝑦 >

 If we choose y=|0>:

𝑈𝑓 |𝑥, 0 > = |𝑥, 𝑓(𝑥) >

 And because Uf is linear, we can apply to any superpositon. For example, 

to the result states of Walsh-Hadamard operator:

𝑊 = 𝐻⊗𝑛 ⇒

𝑈𝑓(𝑊|0 >⊗ 0 > = 𝑈𝑓(
1

𝑁
 𝑖=0

𝑁−1 |𝑖 >⊗ 0 > =
1

𝑁
 𝑖=0

𝑁−1 |𝑖 > |𝑓 𝑖 >

 BUT. All the solutions are entangled and we can get only one for each

measurement



Quantum Paralelism. 

Example

4

 Toffoli gate implement the classical AND operation on 2 bits

|x>

|y>

|0>

|x>

|y>

|x∧y>

|x> |y> |x∧y>

0 0 0

1 0 0

0 1 0

1 1 1

 So, 𝑇𝑜𝑓𝑓𝑜𝑙𝑖(𝑊|00 >⊗ 0 > =
1

2
(|000 > +|010 > +|100 > +|111 >)



Quantum Subroutines 
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W

HX

Uf

XH

|0>

|0> |0>

|𝜓𝑥>

Ancilla or temporary qubit. 



O P E N  Q I S K I T / D E U T S C H - J O Z S A _ A L G O R I T H M N O T E B O O K

Exercise: Quantum Parallel Programming



Quantum Parallelism 
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 When on a state |𝜓 > =  𝑖=0
𝑁−1𝑎𝑖|𝑖 > , a superposition, one unitary gate is

applied to only a one single qubit, all the amplitudes of state |𝜓 > can be 

affected

 For example: 

(𝐼⨂𝐻)

𝑎1

𝑎2

𝑎3
𝑎4

=

1 1
1 −1

0 0
0 0

0 0
0 0

1 1
1 −1

𝑎1

𝑎2

𝑎3
𝑎4

=

𝑎1 + 𝑎2

𝑎1 − 𝑎2

𝑎3 + 𝑎4
𝑎3 − 𝑎4



O P E N  Q I S K I T / F I N D _ E D G E N O T E B O O K

Exercise: Applying Quantum Parallelism



Quantum Fourier Transform
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 Discrete Fourier Transform of a:[0,….,N-1]:𝐴(𝑥) =
1

𝑁
 𝑘=0

𝑁−1𝑎 𝑘 𝑒2𝜋𝑖
𝑘𝑥

𝑁

 Classical Fast Fourier Transform assumes that N = 2n

 Quantum Fourier Transform (QFT):

 Amplitudes a(x) of state |x> is a function of x

 So QFT( 𝑥 𝑎 𝑥 |𝑥 >) =  𝑥 𝐴 𝑥 |𝑥 >

 If a(x) is a function of period r (r power of 2), A(x) are zero

except for states multiple of N/r



Quantum Fourier Transform
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 QFT(|k>) = 
1

𝑁
 𝑥=0

𝑁−1 𝑒
𝑖2𝜋𝑘𝑥

𝑁 |𝑥 >

 The way of calculate QFT is recursive as in classical FFT.

 If 𝑅𝑚 =
1 0

0 𝑒
2𝜋𝑖

2𝑚



O P E N  Q I S K I T / Q F T  N O T E B O O K

Exercise: Programming QFT



Amplitude Amplification
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 Quantum computing is probabilistic. 

 Want to maximize the opportunity of measuring the right answer in 
one shot.

 This means increase probability of the solutions. If possible, to 1.

 Solution: Amplitude amplification. 

 If Ug is the transformation on n qubits (N=2n states) that solve the
problem, apply k times the transformation DUg

 What is Ug ?
 What is D?
 How large is k?



 Ug is a transformation that change the sign to the solutions when
appplied to the supperposition of all states

 D is the Grover’s operator (or difusor operator) that inverts about the
average

 If |G| is the probability of |x> if being a Good result, the number of 
time to apply the algorithm is:

𝑘 ≈
𝜋

4

𝑁

𝐺

Amplitude Amplification
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Ug( ) =

D( ) =



Grover’s operator
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𝐷 =

2

𝑁
− 1

2

𝑁
2

𝑁

2

𝑁
− 1

⋯

2

𝑁
2

𝑁
⋮ ⋮ ⋱ ⋮
2

𝑁

2

𝑁
⋯

2

𝑁
− 1

= −W𝑆0
𝜋𝑊

W is the Walsh-Hadamard transform:

𝐻⊗𝑛 = 𝐻 ⊗ 𝐻 ⊗ …⊗ 𝐻 ⊗ 𝐻

𝑆0
𝜋 is the phase shit by π of the baseis vector |0>:

𝑆0
𝜋 =

−1 0
0 1

⋯
0
0

⋮ ⋱ ⋮
0 0 ⋯ 1

= 𝑋⊗𝑛 𝐶𝑛
[0,𝑛−1]

(𝑍) 𝑋⊗𝑛



O P E N  P R O J E C T Q / G R O V E R N O T E B O O K

Exercise: Grover’s algorithm



Phase estimation
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 Let U an unitary operation.

 Let |u> an eigenvector of U such that (which 0< ϕ <1):

𝑈 𝑢 > = 𝑒𝑖2𝜋𝜙 𝑢 >

 Phase algorithm tray to estimate ϕ appying controled unitaries gates

U2n, n ∈{0,1,…t}, being
1

2𝑡 the precission of the approximation.

 The algorithm use t qubits to calculate the phase and m qubits to 
represent |u>. 

 



Phase Kickback
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Phase estimation
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 Steps:
 Allocate quantum register for n qubits (qn).
 Allocate a second quatum register for m qubits (qm)
 Initialice qm to |u>
 Apply Walsh-Hadamard to qn

 Apply Controled(U2n,n) on |u> for all n qubit in qn

 Make QFT-1 on qn

 Measure qn

 From the measurements (as integers) calculate ϕ

H

X 𝑅𝑧𝜙
20

|0>

|0> |1>

1

2
( 0 > + 𝑒𝑖2𝜋20𝜙 1 >)

H|0>

H|0>

𝑅𝑧𝜙
21

𝑅𝑧𝜙
22

1

2
( 0 > + 𝑒𝑖2𝜋21𝜙 1 >)

1

2
( 0 > + 𝑒𝑖2𝜋22𝜙 1 >)



O P E N  P R O J E C T Q / P H A S E _ E S T I M A T I O N  N O T E B O O K

Exercise: Phase Estimation



Shor’s Factoring Algorithm

Van Meter, R., & Horsman, C. (2013). A blueprint for building a quantum computer. Communications of the ACM, 56(10), 84. http://doi.org/10.1145/2494568

Meter, R. D. Van. (2006). Architecture of a Quantum Multicomputer Optimized for Shor’s Factoring Algorithm. Arxiv:quant-ph/0607065

AC: Abstract Concurrent Architecture. Supports ccNOT, concurrency and gate operands any distance apart

NTC: Neighbor-only, Two-qubit-gate, Concurrent architecture. Qbits in a line. Not ccNOT. Only two-qubits gates. 

Only neighborng qubits can operate

BCDP: Beckman, Chari, Devabhaktuni, and Preskill’s algoritm

20

Post-

Quantum 

Cryptography

is needed (?) 

http://doi.org/10.1145/2494568


O P E N  P R O J E C T Q / S H O R N O T E B O O K

Exercise: Shor’s algorithm




