

Científicas y Técnicas

Quantum Computing

Dr. Andrés Gómez Andres.gomez.tato@cesga.es Apr. 2019

2221

Lecture 3: Basic algorithms

Quantum Paralelism

- Quantum Fourier Transform
- Amplitude amplification
- Phase estimation

"Una manera de hacer Europ

Quantum Paralelism

- The idea behind quantum paralelism is that you can apply a function to all the states in a superposition in just one step
- \succ Let **U**_f an operator that implements the function **f** such that:

$$U_f | x, y \rangle = | x, f(x) \oplus y \rangle$$

> If we choose y=|0>:

ខ្លុង៤ខេង 👯

$$U_f | x, 0 > = | x, f(x) >$$

And because Uf is linear, we can apply to any superpositon. For example, to the result states of Walsh-Hadamard operator:

 $W = H^{\otimes n} \Rightarrow$ $U_f(W|0 > \otimes |0>) = U_f(\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1} |i> \otimes |0>) = \frac{1}{\sqrt{N}}\sum_{i=0}^{N-1} |i> |f(i)>$

BUT. All the solutions are entangled and we can get only one for each measurement

Quantum Paralelism. Example

Toffoli gate implement the classical AND operation on 2 bits

So, $Toffoli(W|00 > \otimes |0>) = \frac{1}{2}(|000>+|010>+|100>+|111>)$

Exercise: Quantum Parallel Programming

OPEN QISKIT/DEUTSCH-JOZSA_ALGORITHM NOTEBOOK

Quantum Parallelism

- ▶ When on a state $|\psi\rangle = \sum_{i=0}^{N-1} a_i |i\rangle$, a superposition, one unitary gate is applied to only a one single qubit, all the amplitudes of state $|\psi\rangle$ can be affected
- For example:

$$(I \otimes H) \begin{vmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{vmatrix} \begin{vmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{vmatrix} = \begin{vmatrix} a_1 + a_2 \\ a_1 - a_2 \\ a_3 + a_4 \\ a_3 - a_4 \end{vmatrix}$$

Exercise: Applying Quantum Parallelism

OPEN QISKIT/FIND_EDGE NOTEBOOK

Quantum Fourier Transform

- > Discrete Fourier Transform of a:[0,...,N-1]: $A(x) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} a(k) e^{2\pi i \frac{kx}{N}}$
- Classical Fast Fourier Transform assumes that N = 2ⁿ
- Quantum Fourier Transform (QFT):
 Amplitudes a(x) of state |x> is a function of x
 - > So QFT($\sum_{x} a(x) | x >$) = $\sum_{x} A(x) | x >$
 - If a(x) is a function of period r (r power of 2), A(x) are zero except for states multiple of N/r

Quantum Fourier Transform

> QFT(|k>) =
$$\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{\frac{i2\pi kx}{N}} |x>$$

The way of calculate QFT is recursive as in classical FFT.

Exercise: Programming QFT

OPEN QISKIT/QFT NOTEBOOK

Amplitude Amplification

- Quantum computing is probabilistic.
- Want to maximize the opportunity of measuring the right answer in one shot.
- This means increase probability of the solutions. If possible, to 1.
- Solution: Amplitude amplification.
- If U_g is the transformation on n qubits (N=2ⁿ states) that solve the problem, apply k times the transformation DU_g
 - \succ What is U_g ?
 - ➤ What is D?
 - ➢ How large is k?

Amplitude Amplification

U_g is a transformation that change the sign to the solutions when appplied to the supperposition of all states

$U_{g}($

- If |G| is the probability of |x> if being a Good result, the number of time to apply the algorithm is:

$$k \approx \frac{\pi}{4} \sqrt{\frac{N}{|G|}}$$

Grover's operator

$$D = \begin{bmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \frac{2}{N} & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \frac{2}{N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} - 1 \end{bmatrix} = -WS_0^{\pi}W$$

W is the Walsh-Hadamard transform:

 $H^{\otimes n} = H \otimes H \otimes \dots \otimes H \otimes H$

 S_0^{π} is the phase shit by π of the base vector |0>:

$$S_0^{\pi} = \begin{bmatrix} -1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = X^{\otimes n} \ C_n^{[0,n-1]}(Z) \ X^{\otimes n}$$

Exercise: Grover's algorithm

OPEN PROJECTQ/GROVER NOTEBOOK

Phase estimation

- Let U an unitary operation.
- Let $|u\rangle$ an eigenvector of U such that (which $0 < \phi < 1$): $U|u\rangle = e^{i2\pi\phi}|u\rangle$
- ➢ Phase algorithm tray to estimate **φ** appying controled unitaries gates **U**²ⁿ, n ∈{0,1,...t}, being $\frac{1}{2^t}$ the precission of the approximation.
- The algorithm use t qubits to calculate the phase and m qubits to represent |u>.

Phase estimation

Steps:

- > Allocate quantum register for n qubits (q_n) .
- Allocate a second quatum register for m qubits (q_m)
- \succ Initialice q_m to |u>
- \succ Apply Walsh-Hadamard to q_n
- > Apply Controled(U^{2n} ,n) on |u| for all n qubit in q_n
- \succ Make QFT⁻¹ on q_n
- \succ Measure q_n
- \succ From the measurements (as integers) calculate ϕ

Exercise: Phase Estimation

OPEN PROJECTQ/PHASE_ESTIMATION NOTEBOOK

Shor's Factoring Algorithm

AC: Abstract Concurrent Architecture. Supports ccNOT, concurrency and gate operands any distance apart NTC: Neighbor-only, Two-qubit-gate, Concurrent architecture. Qbits in a line. Not ccNOT. Only two-qubits gates. Only neighborng qubits can operate

BCDP: Beckman, Chari, Devabhaktuni, and Preskill's algoritm

Van Meter, R., & Horsman, C. (2013). A blueprint for building a quantum computer. *Communications of the ACM*, 56(10), 84. <u>http://doi.org/10.1145/2494568</u> Meter, R. D. Van. (2006). Architecture of a Quantum Multicomputer Optimized for Shor's Factoring Algorithm. Arxiv:quant-ph/0607065

Exercise: Shor's algorithm

OPEN PROJECTQ/SHOR NOTEBOOK

Thanks! Questions?

