Principles and examples of neutro detection

D. Cano-Ott Nuclear Innovation Unit – CIEMAT

daniel.cano@ciemat.es

Why measuring neutrons?

Neutrons show up in many different fields of science and technological applications:

- Nuclear structure. (Neutron induced) nuclear reactions, delayed neutron emission...
- Nuclear astrophysics.
- Material science. Neutron diffractometers for investigating the structure of materials.
- Fission reactors.
- Fusion research and future fusion reactors.
- Material research for fission and fusion reactions.
- Isotope production.
- Radiobiology.
- Dosimetry in radiotherapy treatments (electrons and protons).
- Dosimetry in aircrafts.
- Dosimetry in space missions.

The characterisation of the neutron fields in these different environments requires a large variety of neutron detectors.

How do we measure neutrons?

Neutrons don't interact electromagnetically with matter (i.e. don't produce ionisation) and thus are difficult to measure.

They are mainly detected via **nuclear reactions**. The preferred ones are those that:

- Have a large cross section. The energy dependence of the cross (n,X) reaction will determine the detection **efficiency** of the detector in a **given neutron energy range**.
- Produce **secondaries** which are easily detected, typically **charged particles or γ-rays**:
	- (n,p)
	- $-$ (n,t)
	- (n,α)
	- (n,f)
	- (n,γ)

The neutron detection can be prompt (i.e. when the nuclear reaction occurs) or delayed (i.e. counting particles after a long irradiation / activation).

E INNOVACIÓN

tiernat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Detection mechanisms

Prompt detection

The detector contains an isotope with a large neutron interaction cross section (i.e. dopant, converter…). The secondary particles produced in the neutron reaction (charged particles, γrays…) end up in electronic pulses.

Delayed detection

1. A sample is irradiated in a neutron field during a given time.

2. The sample is analysed after the irradiation. Different cross sections/interaction lead to different analyses: tracks in solids, bubbles, γ-ray spectrometry of activation products, mass spectrometry.

Common reactions used in neutron detectors

Common reactions used for neutron detection:

```
Elastic scattering:
n + {}^{1}H \rightarrow n + {}^{1}Hn + {}^{2}H \rightarrow n + {}^{2}H (abund.=0.015%)
```
Charged particle: $n + 3$ He $\rightarrow 3$ H + ¹H + 0.764 MeV (abund.=0.00014%)

```
n + 6Li \rightarrow <sup>4</sup>He + <sup>3</sup>H + 4.79 MeV (abund.=7.5%)
n + 10B \rightarrow <sup>7</sup>Li<sup>*</sup> + <sup>4</sup>He\rightarrow <sup>7</sup>Li + <sup>4</sup>He + 0.48 MeV \gamma +2.3 MeV
       (abund.=19.9%, b.r.=93%)
             \rightarrow <sup>7</sup>Li + <sup>4</sup>He + 2.8 MeV (b.r.=7%)
```
Radiative capture: $n + \frac{155}{156}$ d \rightarrow $\frac{156}{156}$ d^{*} \rightarrow γ -ray + CE spectrum (abund.=14.8%)

 $n + {}^{157}Gd \rightarrow {}^{158}Gd^* \rightarrow \gamma$ -ray + CE spectrum (abund.=15.7%)

Fission:

 $n + \frac{235}{U}$ \rightarrow fission fragments + ~160 MeV $n + \frac{239}{10}$ \rightarrow fission fragments + ~160 MeV $n + \frac{238}{\cup} \rightarrow$ fission fragments + ~160 MeV

Neutron Cross section standards

Most of the cross section measurements are relative to a "standard cross section". Standard = uncertainty $< 1\%$

https://www-nds.iaea.org/standards/

DE CIENCIA

Common neutron detectors

GOBIERNO MINISTERIO DE CIENCIA DE ESPAÑA E INNOVACIÓN Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

ARIEL-H2020 HISPANOS Hands-On school on the production, detection and use of neutron beams, September 21st – 30th, 2022

7

Gaseous detectors

GOBIERNO DE ESPAÑA

MINISTERIO

DE CIENCIA

E INNOVACIÓN

3He neutron detectors

3He is a very rare isotope. Natural abundance 0.000137%. It is a by-product of radioactive decay of tritium, mainly produced via the nuclear weapons program and, at a smaller rate, in nuclear power plants (LWR and CANDU reactors).

 $3H (T_{1/2} = 12.3 \text{ V}) \rightarrow 3He + e + \nu_e$

U.S. mass production of tritium ceased in the mid 1990's (weapons reduction) but the demand increased after September 11th (portal monitors, homeland security). Prices increased dramatically are are still high.

The nuclear reaction of interest is:

 $n + 3$ He $\rightarrow 3$ H + p + 764 keV

Due to momentum conservation: trajectories antiparallel Due to energy conservation, **proton** kinetic energy = **573 keV** and triton kinetic energy = **191 keV** (3:1) at very low neutron incident energies.

High efficiency for thermal neutrons and low sensitivity to γ-rays.

iemot Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

3He neutron detectors

Positive HV on wire, E field falls off as 1/r (strong near wire)

The electrons drift in toward wire (anode), ions drift out toward grounded tube wall (cathode), but at velocities ~ 1000 times slower.

The current pulse measured is proportional to the charge collected on the wire.

³He is typically mixed with $CO₂$, Ar or other gases for enhancing the avalanche process.

E CIENCIA

INNOVACIÓN

annot i Centro de Investigacione

Energéticas, Medioambientales y Tecnológicas

3He response function

y Tecnológicas

erc European Research Counci 11

3He response function

12

The 3He(n,p) cross section

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

GOBIERNO

DE ESPAÑA

MINISTERIO

DE CIENCIA

E INNOVACIÓN

Detection efficiency estimation

³He density $ρ = 1.78 \cdot 10^{-4}$ g/cm³ $\sigma_{\text{thermal}} \sim 10000 \text{ barn}$ $\sigma_{1 \text{ eV}}$ ~ 1000 barn

Macroscopic c.s. Σ_{th} = (ρ·6.022·10²³/A) · σ_{thermal} cm⁻¹ = 3.57·10⁻¹ cm⁻¹ $\lambda_{\text{th}} = 1/\sum_{\text{th}} = 2.8 \text{ cm}$

 $\Sigma_{1 \text{ eV}}$ = 3.57 \cdot 10⁻² cm⁻¹ λ_{1} eV = 1/ Σ_{1} eV = 28 cm

Probability of no interaction in a distance $x = \exp(-\sum x)$ Probability of interaction in a distance $x = 1 - \exp(-\sum x)$

For a 2.8 cm thick detector:

intrinsic efficiency ω 0.025 eV \sim 63 % intrinsic efficiency $@$ 1 eV ~ 10 % intrinsic efficiency $@$ 1 keV ~ 0.2 %

iemot Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

3He pulse shape analysis

Implementation of a pulse shape analysis routine that uses the 3He signal rise time for discriminating neutrons from α, β/e- and discharges. At present time, very low efficiency for discriminating α from neutrons.

INISTERIC DE CIENCIA E INNOVACIÓN

tiernat Centro de Investigacione Energéticas, Medioambientales

y Tecnológicas

detection and use of neutron beams, September 21st – 30th, 2022

BF₃ detectors

 $10B$ (abund.=19.9%) is more abundant than $3He$. Due to its large neutron absorption cross section, it was commonly used as neutron BF_3 gas detector prior to the widespread availability of 3 He. However, BF₃ is a toxic and corrosive gas (3 He is inert) and more sensitive to y-rays than 3 He. Nevertheless, some facilities have recently revisited BF_3 due to the ³He shortage.

The 10B(n,α) cross section

Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

MINISTERIO

DE CIENCIA

E INNOVACIÓN

GOBIERNO

DE ESPAÑA

Long counters

 $BF₃$ detectors have been used for a long period as long counters: neutron detectors that have a constant efficiency over a broad energy range. The tube is surrounded by a moderator for increasing the sensitivity to fast neutrons.

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

ORIERNO

MINISTERIO DE CIENCIA

E INNOVACIÓN

 0.2

 $E \rightarrow$

ARIEL-H2020 HISPANOS Hands-On school on the production, detection and use of neutron beams, September 21st – 30th, 2022

 $30"$

 0.04 0.06

 0.1

Relative sensitivity

 0.4

 0.02

 $\overline{2}$

0.6 0.8 1.0

 0.4

19

 4 MeV 6

The BRIKEN 3He long counter

A. Tarifeño-Saldivia et al., Journal of Instrumentation 12 (04), P04006 A. Tolosa-Delgado et al., NIM A 925, 133 (2019)

y Tecnológicas

Ionisation chambers

Use charge particles produced in neutron reactions for detecting/monitoring neutrons. Use thin targets/coatings of materials with large neutron cross sections.

90 100

 $Pu-239$

• Have typically low efficiencies.

iemot Centro de Investigacione Energéticas, Medioambientales

y Tecnológicas

- Can stand high flux neutron fields (reactor cores, spallation sources).
- Can be operated in pulsed or current modes.
- $1 10$ ns time resolution.

INNOVACIÓN

 $7%$

 $U - 233$

ARIEL-H2020 HISPANOS Hands-On school on the production, detection and use of neutron beams, September 21st – 30th, 2022

90

130 140

 160

6%

Ionisation chambers

After a neutron reaction in the target/coating, the charge particle enters into the gas and produces ionisation. The charge is collected in the anodes and cathodes and the resulting pulse height is proportional to it.

The targets/coatings need to be thin to allow the charged particles escaping without a significant energy loss. This is particularly important for fission chambers.

22

235,238U and 239Pu (n,f) cross sections

Ciemat

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Examples of ionization chambers

Ionisation chamber used inside a nuclear reactor.

Ionisation chamber with a stack of 10 239Pu samples used right now at n_TOF. Very compact detector embedded inside a γray calorimeter.

Other gaseous detectors: PPACs

Ciemat

Centro de Investigaciones
Energéticas, Medioambientales

y Tecnológicas

GOBIERNO

DE ESPAÑA

MINISTERIO
DE CIENCIA

E INNOVACIÓN

Other gaseous detectors: micromegas

Working principle: **ionisation** (conversion gap) and **avalanche** (amplification). The readout is done with different strips.

Scintillators

The scintillation

Scintillation: light of a characteristic spectrum is emitted following the absorption of radiation. The emitted radiation is usually less energetic than that absorbed.

Scintillation is an inherent molecular property in conjugated and aromatic organic molecules and arises from their electronic structures. It also occurs in many inorganic materials, including salts, gases, and liquids.

DE CIENCIA

INNOVACIÓN

Ciemat

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Main characteristics of scintillation detectors:

- **Solid** (crystals or plastics) or **liquid**. Easy to handle.
- **High density** (solid or liquid, also gaseous) which leads to potential **high efficiency**.
- **Fast time response**. Many materials have subnanosecond time resolutions. Various time components are present.
- **Pulse shape discrimination** capabilities. The interaction of electrons (from g-rays) and charged particles (from neutron interactions) leads to different pulse shapes.

Scintillators

Ciemat Centro de Investigacione Energéticas, Medioambientales

y Tecnológicas

INNOVACIÓN

6Li doped glass detectors

Lithium glass scintillators are made from 6Li-enriched substrate. The cross section of 6 Li is lower than that of 3 He but larger detection efficiency can be achieved thanks to the larger content of 6Li nuclei in the solid scintillators vs. gas filled proportional counters.

Time resolution \sim 1 ns. Density \sim 2 g/cm³. Can be shaped in different sizes and forms. Very common in solid state experiments.

DE CIENCIA

E INNOVACIÓN

The 6Li(n,3H) cross section

Ciemat **MINISTERIO DE CIENCIA** Centro de Investigaciones Energéticas, Medioambientales **E INNOVACIÓN** y Tecnológicas

GOBIERNO

DE ESPAÑA

Organic scintillators

Liquid and plastic scintillators are mainly obtained from two companies: St. Gobain Crystals (BC) and Eljen Technologies (EJ).

Similar products from **Eljen** and additional ones:

EJ309, with and without ¹⁰B. Less toxic and higher flash point

 $EJ299 - 33$ with a (not really fantastic) neutron/ γ-ray discrimination

Fast neutron detection with organic scintillators

Organic scintillators (liquid and plastics) are excellent fast neutron detectors.

Detection principle: (n,p) reactions in the Hydrogen rich material

- High intrinsic efficiency (50% to 20% in the 1 MeV 10 MeV range for $3"x3"$ detectors) due to the large (n,p) cross section and reasonable density (21) g/cm³). Sensitive to neutrons at all energies above the detection threshold (100 keVee).
- Time resolution < 1 ns.
- Low sensitivity to high energy γ-rays (large compared to gaseous).
- Some liquids offer excellent neutron/γ pulse shape discrimination capabilities.

Drawbacks:

-poor energy resolution (~25% at 1 MeV)

-particle dependent and non-linear light output (e-, protons, D, T, a, ¹²C...).

-high intrinsic threshold E_n > 100 keV due to the light output.

-the information of the incident neutron energy is not easily recovered from the spectral analysis. TOF or unfolding techniques are necessary for extracting the information on the incident neutron energy.

Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

INNOVACIÓN

1H(n,el), 2H(n,el) and 6He(n,3H) cross sections

GOBIERNO MINISTERIO DE ESPAÑA **DE CIENCIA** E INNOVACIÓN Ciemat

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

The BC501A scintillator offers good overall n/γ pulse shape discrimination capabilities. At E_n > 1 MeV the separation is really excellent.

Light output of BC501A

Virtually for all organic scintillators (I am aware of):

 $L(E) \simeq k \cdot E$ for e-

but

 $L(E) \neq k \cdot E$ for protons and heavier charged particles

Important consequences for the energy loss of the proton recoil:

L(3 MeV) – L(2 MeV) \neq $L(2 \text{ MeV}) - L(1 \text{ MeV})$

INISTERIO DE CIENCIA

E INNOVACIÓN

Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Response function of BC501A

The shape of the efficiency curve depends largely on the light yield and on the threshold. A good calibration and Monte Carlo modelling are necessary.

Inorganic scintillators: CLYC

 $Cs₂LIYCl₆:Ce (CLYC) inorganic scintillator belonging to the "elpasolite" family of$ crystals:

- Typical gamma resolution \sim 5% @ 662 KeV.
- Thermal neutron detection via **6Li(n,3H) reaction**.
- Fast neutron detection possible with 7Li and 35Cl.

Growth of different sizes and shapes of crystals.

Possible uses as:

- Dual monitor system (neutron, gamma)
- Gamma calorimeter in the presence of high neutron fields (cross section measurements)
- Possible alternative to 3He detectors for some applications

Neutron / γ-ray discrimination

As for the BC501A, the fast component for neutron signals is suppressed with respect to the γ-ray signals.

Neutron – gamma discrimination

Discrimination by fit of average signal

Digitalization of raw signals and development of custom routines allows to make dedicated analysis for each detector type.

Pile up detection and reconstruction

Passive neutron detectors

DE CIENCIA

Bubble detectors consist of an elastic polymer throughout which droplets of a superheated liquid have been dispersed. When these droplets are struck by neutrons, they form small gas bubbles that remain fixed in the polymer to provide a visual record of the dose. Dose is directly proportional to the number of bubbles.

Very simple to use and analyse (= counting bubbles). Commonly used in aircrafts and space missions.

INNOVACIÓN

Activation foils use neutron absorption reactions with known cross sections. After the irradiation, decay g-ray spectroscopy allows to infer the number of activation products (i.e. reactions) and subsequently the number of incident neutrons (knowing the mass and the cross sections). Different sets of foils are available for covering different energy ranges.

Neutron Spectroscopy

Determination of the intensity and energies of the neutrons. We don't have something similar to the NaI or Ge detectors for neutrons and thus need to use alternative methods:

- **Unfolding methods**. Applicable for continuous neutron sources. Typically a low energy resolution is achieved. Can be used with virtually any type of detectors (gaseous, scintillators, track edge, TLDs).
- **Time Of Flight technique** (TOF). Applicable when the neutrons are pulsed. Good energy resolution can be achieved with fast detectors (scintillators or fast semiconductors).

Combination of both…

The idea behind the unfolding: a simple case

Imagine that you measure the following pulse height spectrum with a neutron detector.

INISTERIC DE CIENCIA

Unfolding of scintillator pulse heigh spectra

Ciemat **INISTERIC DE CIENCIA** Centro de Investigaciones Energéticas, Medioambientales **E INNOVACIÓN** y Tecnológicas

ARIEL-H2020 HISPANOS Hands-On school on the production, detection and use of neutron beams, September 21st – 30th, 2022

46

Unfolding of 3He data

Array of 3He detectors embedded in polyethylene matrices of different thicknesses (i.e. sensitive to different neutron energies).

The neutron counts *Ci* in the different 3He detectors are related to the neutron fluxes in different energy groups via:

$$
C_i = \sum_j R_{ij} \phi_j
$$

47

D. Jordan et al. Astroparticle Physics 42 (2013) pp 1-6

Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

MINISTERIO

DE CIENCIA

E INNOVACIÓN

flight path L

MINISTERIO

DE CIENCIA

flight path L

MINISTERIO

DE CIENCIA

E INNOVACIÓN

flight path L

MINISTERIO

DE CIENCIA

Ciemat Centro de Investigaciones Energéticas, Medioambientales E INNOVACIÓN y Tecnológicas

GOBIERNO

DE ESPAÑA

MINISTERIO

DE CIENCIA

DE CIENCIA

INNOVACIÓN

Ciemat Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Calibration of neutron detectors

The calibration process is very important for determining the intrinsic properties of each detector. The process needs to have a variety of neutron sources.

- Radioactive source: (α, n) Am/Be, Pu/Cand spontaneous fission 252 Cf.

iiemat

Centro de Investigaciones

y Tecnológicas

Facilities with accelerator drive neutron sources

Deuterium-Deuterium and Deuterium-Tritium reactions for E_n > 5 MeV

 $7Li(p,n)$ reaction, $E_n=0.144$, 0.250, 0.565, 1.2, 2.5 MeV

Pulsed beams for TOF background discrimination

TOF measurements at various paths.

Energy calibration with sources (137Cs, 22Na, 207Bi)

Characterisation at laboratories like **PTB-Braunschweig** (Cyclotron and VdG), **Bruyeres Le Chatelle** (various VdG) or other facilities like **HISPANOS@CNA**.

Monte Carlo simulations

Neutron physics models built in Monte Carlo codes have reached the level of maturity necessary for performing accurate efficiency calibrations (~5%). Very important for complementing the necessary experimental calibrations.

neutronic calculations. Accurate calculation of detection efficiencies of proportional counters and other types of neutron detectors. Not very usable for complex detector simulations.

GEANT4/G4ParticleHP

model: good neutron physics and suitable for complex detectors. Excellent for organic scintillators.

56 **SCINFUL** for high energy

MOdular **N**eutron time of flight **S**pectrome**TER**

International collaboration between CIEMAT, JYFL, VECC, IFIC, and UPC

Consists of 65 cells of liquid scintillator (up to 100)

DE CIENCIA

E INNOVACIÓN

85As β-decay

 $P_n = 59.4 \%$

PhD thesis of Alberto Pérez de Rada

Ciemat Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

The accelerator laboratory of the University of Jyväskylä (JYFL)

I.D. Moore *et al.*, Nucl. Instrum. and Methods B, **317**, (2013) 208

MONSTER setup @ JYFL

Ciemat **GOBIERNO MINISTERIO** DE CIENCIA Centro de Investigaciones DE ESPAÑA Energéticas, Medioambientales
y Tecnológicas E INNOVACIÓN

MONSTER setup @ JYFL

MINISTERIO

DE CIENCIA
E INNOVACIÓN

Time and energy response

The conversion of the ionisation into light (light yield) is incorporated in the simulation.

The the spread in the TOF distributions due to the variations in the interaction point (i.e. flight path) is also obtained.

The Light and TOF distributions are folded with energy and time resolutions (light collection, photoconversion, electronics…)

Simulation

Folded

2000

1800

1600

1400

1200 1000

 800

600 400

 200

 0^\vdash_O

100

200

300

Counts

Neutron detection efficiency

Accurate Monte Carlo simulations calibrated at PTB and in-situ calibration with a 252Cf neutron source.

Ciemat

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

β-detection efficiency

The β-detection efficiency depends on the β-detector threshold and varies up to the Q_8 .

The efficiency for all the decays was obtained by detailed Monte Carlo simulations of the decays and validated with data from 92Sr into 92Y.

Analysis of the 85As neutron TOF data

Different cuts applied to obtain a "clean" neutron TOF spectrum.

85As neutron TOF data unfolding

Unfolding applying an iterative Bayesian method: neutron energy spectra and P_n value (with number of decays from the β-activity fit.)

F CIENCIA

INNOVACIÓN

iemat Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Final results of 85As

MINISTERIO

DE CIENCIA

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The end!

Centro de Investigaciones
Energéticas, Medioambientales
y Tecnológicas

Ciemat

1H(n,el), 2H(n,el) and 3He(n,p) cross sections

 $H-1(n,el)$, $H-2(n,el)$ and $He-3(n,p)$

MINISTERIO

DE CIENCIA

E INNOVACIÓN

Ciemat Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

