
1. Introduction

The PICOSEC Micromegas detection concept consists of a two-stage Mi-
gromegas detector [? ] coupled to a front window that acts as Cherenkov
radiator coated with a photocathode. The drift region is very thin (∼ 200µm)
minimizing diffusion effects on the signal timing. Due to the high electric field,
photoelectrons undergo preamplification in the drift region. The readout is a
bulk Micromegas [? ], which consists of a woven mesh and an anode plane
separated by a gap of ∼ 128µm, mechanically defined by pillars. In normal op-
eration, a relativistic charged particle traversing the radiator produces UV pho-
tons, which are simultaneously (RMS less than 10 ps) converted in to primary
(photo) electrons at the photocathode. These primary photoelectrons produce
preamplification avalanches in the drift region. A fraction of the preamplifica-
tion electrons (∼ 25%) traverse the mesh and are finally amplified in the anode
region. The arrival of the amplified electrons at the anode produces a fast signal
(with a rise-time of ∼ 0.5 ns) referred to as the electron-peak (“e-peak”), while
the movement of the ions produced in the amplification gap generates a slower
component ion-tail (∼ 100 ns). This type of detector operated with Neon or
CF4 based gas mixtures can reach high enough gains to detect single photoelec-
trons. As it has been proven experimentally [? ], the PICOSEC Micromegas
detector (hereafter PICOSEC) has the potential to time the arrival of Minimum
Ionizing Particles (MIPs) with a sub-25 ps accuracy. Extensive tests with laser
beams also demonstrated [? ? ] very good timing resolution in detecting single
photons.

Naturally, the PICOSEC timing resolution depends on the drift and anode
operating voltages. In the laser-beam tests, where the anode voltage was high
(>400V), it was found that the single-photoelectron timing resolution is deter-
mined mainly by the drift field. It was also observed that the PICOSEC signal
arrival time (SAT) and the timing resolution vary as functions of the size of
the e-peak, i.e. the e-peak voltage amplitude or the respective e-peak charge.
These functional forms were found to be practically the same at all model-PICO
considered drift voltages.

Detailed simulations, based on the GARFIELD++ [? ] package, including
the simulation of the electronic response of the detector and the noise con-
tribution, were used to reproduce [? ] the observed PICOSEC performance
characteristics. Comparison of simulation predictions with the laser-beam cali-
bration data resulted in estimating the Penning transfer rate (PNtr) [? ] of the
used COMPASS gas1. As shown in Fig. 1, the SAT and the timing-resolution
of the simulated waveforms depend on the e-peak size in exactly the same way
observed in the calibration data.

1The term “COMPASS gas” refers to the mixture 80% Ne, 10% C2H6, 10% CF4, as used by
the COMPASS Collaboration. The PNtr for this gas was estimated in [? ] to be ∼ 50%.
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Figure 1: (left) Mean SAT as a function of the electron peak charge. (right) Time resolution
as a function of the electron peak charge. In both figures black points represent experimental
measurements [? ] while colored symbols correspond to simulations [? ]. The gas used is the
COMPASS gas with an anode voltage of 450 V and for drift voltages of (red) 300 V, (green)
325 V, (blue) 350 V, (cyan) 375 V, (magenta) 400 V and (yellow) 425 V.

The agreement between simulation and experimental data is further ex-
ploited in order to identify the microscopic physical variables, which determine
the observed timing characteristics. Specifically, GARFIELD++ simulations
show that the number of pre-amplification electrons traversing the mesh and
initiating avalanches in the amplification region (a microscopic variable here-
after called “electron multiplicity after the mesh”) determines the size of the
PICOSEC e-peak (a macroscopic, observed quantity), as seen in the left plot of
Fig 2.

In the simulation, one has the ability, for each preamplification electron
traversing the mesh, to determine the time it enters the anode region, mea-
suring time from the instant of the photoelectron emission. The average of
these times, for all preamplification electrons, defines the microscopic variable
hereafter called “total-time after the mesh”. This microscopic variable has the
same properties as the measured arrival-time of the PICOSEC signal2. Indeed,
as shown in the middle plot of Fig.2, for simulated single photoelectron events
with the same e-peak size, the spread (RMS) of the microscopic “total-time
after the mesh” values is found to be equal to the spread of the corresponding
signal arrival times, i.e. to the macroscopic PICOSEC timing resolution. Fur-
thermore, the mean values of the ”total-time after the mesh” differ only by a
constant time-offset from the respective mean values of the PICOSEC signal
arrival times, as demonstrated in the right plot of Fig. 2. This offset is inde-
pendent of the e-peak size and it is due to the fact that the SAT also includes:
a) the propagation time of the amplification avalanches and b) the rise-time of
the signal up to the 20% of the e-peak amplitude.

Having identified the relevant microscopic variables that determine the PI-
COSEC timing characteristics, the detailed Garfield++ simulation is further

2The arrival-time of the PICOSEC signal is defined at a constant fraction of the e-peak
amplitude, as described in [? ].
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Figure 2: (left) The mean e-peak charge of simulated PICOSEC signals versus the respec-
tive “electron multiplicity after the mesh”. The middle and right plots demonstrate that
the macroscopically determined PICOSEC SAT has the same properties as the microscopic
variable “total-time after the mesh”, as it is described in the text.

used in this work to study the dynamical evolution of the PICOSEC signal
in terms of the electron multiplicities and other important variables, such as
the primary photoelectron drift path and the length of the pre-amplification
avalanches. Moreover, in order to gain insight on the main physical mecha-
nisms causing the observed behaviour, a statistical model is built, based on a
simple concept of “time-gain per interaction”, which reproduces very well the
GARFIELD++ predictions.

An overview of this article is given in Section 2 while the rest of the Sections
contain a detailed description of the stochastic modelling of all relevant processes
and demonstrate the model performance. The article finishes with concluding
remarks in Section 9.

2. An Overview

In this work, the Garfield++ package is used to describe microscopically
the PICOSEC timing properties by simulating in detail all the relevant atomic
processes. Interpreting the simulation predictions statistically leads to several
counter-intuitive observations, e.g. the primary photoelectron drift velocity is
found to depend on the Penning Transfer rate, the avalanche electrons are found
to drift faster than the primary photoelectron, the average speed of the avalanche
as a whole is found larger than the drift velocity of its constituent electrons, the
longitudinal diffusion of the avalanche is found almost independent on its length
and the PICOSEC timing resolution is basically determined by the drift path of
the primary photoelectron. However, when expressing the timing resolution as
a function of the number of electrons passing through the mesh (i.e. the e-peak
size), the related photoelectron and the avalanche contributions are found to be
heavily correlated.

Furthermore, it was found that at high drift fields (e.g. of 425V ), even
though only 25% of the pre-amplification electrons traverse the mesh into the
amplification region, this passage does not affect the timing resolution, but it
only adds a constant delay to the signal arrival time. At lower drift fields (e.g.
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at 325V drift voltage), even if the mesh transparency remains the same, the
timing resolution degrades by the passage through the mesh, as a non-linear
function of the number of electrons arriving on the mesh.

In order to identify the main physical processes, causing the observed be-
haviour, a simple phenomenological model is developed and presented in this
paper. The model is based on a simple mechanism of “time-gain per interaction”
and it employs a statistical description of the avalanche evolution based on ap-
proximations. It describes well the above-mentioned phenomena in an excellent
agreement with the GARFIELD++ simulation results, as it is demonstrated in
the following Sections.

The input parameters of the model (i.e. drift velocities, ionization prob-
abilities per unit length, multiplication and diffusion coefficients, mean value
and variance of the ”time-gain per interaction”, average mesh transparency and
longitudinal diffusion around the mesh, etc.) are commonly used statistical
variables with values that depend on the PICOSEC gas filling and the operat-
ing voltage settings. The values of these parameters have been estimated from
GARFIELD++ simulations, for COMPASS gas filling, assuming several values
of the PNtr, anode voltage set to 450V and a multiple of drift voltages. A com-
pilation of these parameter values can be found in Appendix A. Hereafter, the
default PNtr value is 50%, the default voltage settings are 450V at the anode
and 425V at the drift, unless otherwise stated.

The model is based on the observation [? ] that an electron drifting in
an homogeneous electric field, when undergoing only elastic scatterings it drifts
along the field with less average velocity than an electron suffering energy losses
through its interactions. In Section 3, the above idea is quantified in terms of a
”time-gain per interaction”. It is used to explain the different drift velocities of
a photoelectron prior ionization and of an avalanche electron. It also explains
the effect of the PNtr on the drift velocities.

Sections 4 - 6 describe the modelling of microscopic processes up to the
mesh. In this stage, the important microscopic variables are: i) the number
of pre-amplification electrons arriving on the mesh (hereafter called “number
of pre-amplification electrons”), and ii) the average of the arrival times of the
individual pre-amplification electrons on the mesh (hereafter called “total-time
on the mesh”). The transfer of the pre-amplification electrons through the mesh
is modelled in Section 7.
Specifically, the average avalanche velocity is a statistical outcome of several dy-
namical effects, including those that determine the avalanche growth. Section 4
models the simultaneous drift and growth of the pre-amplification avalanche and
expresses the “avalanche transmission time”3 in terms of the avalanche length
and its electron multiplicity at this length. The model also explains quantita-

3The “avalanche transmission time” is defined as the average of the arrival times of the
avalanche electrons on the mesh, starting from the instant of the fist ionization which initiated
the avalanche.
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tively the GARFIELD++ prediction that the avalanche, as a whole, runs faster
than its constituent electrons. In Section 5, by integrating properly the results
of Section 4, the model predicts the dependence of the “total time on the mesh”
on the number of pre-amplification electrons.
The arrival times of the avalanche electrons on a plane are mutually correlated,
due to the sharing of common parent electrons. This correlation is quantified in
Section 6. By evaluating the avalanche contribution to the statistical spread of
the ”total-time on the mesh”, the model predicts that it is almost independent of
the avalanche length. The longitudinal diffusion of the primary photoelectron,
along its drift path before the first ionization, is the major factor determining
the PICOSEC timing resolution. However, due to the fact that the photoelec-
tron drift path and the avalanche length sum up to the drift gap, the timing
resolution indirectly depends on the avalanche length.

Although the length of the avalanche is an important physical parameter, it is
not an experimental observable. In Section 7, the statistical spread of the ”total
time on the mesh” is expressed as a function of the pre-amplification electron
multiplicity, by modelling of the dynamical growth of the avalanche. Finally,
the influence of the mesh on the PICOSEC timing properties is quantified in
Section 8 in terms of the mesh transparency, the number of the pre-amplification
electrons reaching the mesh and an extra time-spread term, due to the electron
drift through the non-homogeneous, electric field around the mesh.
The conclusions in Section 9 comprise a discussion on the success and limitations
of the model to describe the PICOSEC timing characteristics as well as on
potential applications for studying related phenomena.

3. Electron Drift Velocities and the Basic Model Assumptions

It is known [? ] that an electron in an homogeneous electric field, if under-
goes only elastic scatterings, drifts along the field lines with less average velocity
than an electron suffering energy losses through inelastic interactions. This is
due to the fact that forward moving electrons lose more time when backscattered
elastically, before the electric field forces them to forward motion, compared to
electrons losing energy to backscattering interactions. The argument that an
electron every time it loses energy, gains in transmission time is used in this Sec-
tion to explain the different behavior of drift velocities, predicted by detailed
GARFIELD++ simulations.

In a PICOSEC drift gap of a certain size D, let L be the length of a pre-
amplification avalanche and D − L the corresponding drift length of the pho-
toelectron before the first ionization initiating the avalanche. Let Tp(L) be the
time taken from the instant of the photoelectron emission to its first ioniza-
tion (hereafter called “photoelectron transmission time” or just “photoelectron
time”). Measuring time from the instant of the first ionization, let T (L) be
the average of the times that the avalanche electrons reach the mesh (hereafter
called “avalanche transmission time” or just “avalanche time”). Apparently
the “total-time on the mesh”, Ttot(L) equals to the sum of the photoeletron
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Figure 3: The left-column plots show distributions of the ”total time on the mesh” (top), the
”avalanche transmission time (middle) and the ”photoelectron transmission time” (bottom),
for cases that the longitudinal length of the simulated avalanche (L) was between 144.45 and
144.75 µm. The solid lines represent fits with the Wald distribution function. The right plot
presents the mean values of the above times, as well as the mean of the ”total time after
the mesh”, versus the longitudinal length of the respective pre-amplification avalanche. It is
worth noticing that the total time after the mesh differs only by a constant time-offset from
the respective total time on the mesh, at all the considered avalanche lengths. XXXXXXXX
change labels and text in the plots

and avalanche transmission times,i.e. Ttot(L) = Tp(L) + T (L). All the above
time-variables behave statistically as random variables following probability dis-
tributions that are well approximated by Inverse Gaussians (Wald) functions,
as demonstrated in Fig. 3 using Garfield++ simulations. The simulations also
show that the mean values of the above times depend linearly on the avalanche
length, as it is also shown in the right plot of Fig. 3. Similarly, the mean value
of the time Tea (x), which is the time taken by the photoelectron to cover dis-
tance x from the point of (and after) the initiation of the simulated avalanche,
was found also to depend linearly on x. The slopes of the aforementioned linear
dependences define the inverse of the respective drift velocities.

Estimated values of the above drift velocities are shown in Table A.1, for
three different values PNtr and default high voltage settings, and in Table A.7
for 50% PNtr, 450 V anode and several drift voltage settings. Specifically, Vp
stands for the “photoelectron drift velocity”, Va denotes the “avalanche drift
velocity” and Vea is the “drift velocity of an avalanche-electron”, assuming that
every avalanche electron drifts with the same velocity. The shown Vp, Va and Vea
values have been estimated by linear fits4 to the Tp(L) versus L, T (L) versus L
and Tea (x) versus x dependencies, observed in Garfield++ simulations, respec-

4The small, non-zero constant terms found in these linear fits were attributed to the fact
that the statistical description of the electron drift and the avalanche development starts to
be valid after statistical equilibrium is reached.
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Figure 4: Distributions of the photoelectron drift path length, before the initiation of an
avalanche, produced by Garfield++ simulations with 425 V drift voltage and Penning Transfer
rates equal to 100% (black circles) and 0% (red squares).The solid lines represent the results
of exponential fits.

tively. Apparently, all the above drift velocities increase with the applied drift
voltage; however, the photoelectron drift velocity is smaller than the avalanche-
electron drift velocity, which is in turn smaller than the drift velocity of the
avalanche as a whole. Furthermore, as a function of the Penning Transfer rate,
the photoelectron drift velocity decreases, the drift velocity of the avalanche as
a whole increases, while the avalanche-electron drift velocity remains constant.

Our model attributes the different values of the above drift velocities to
time-gains per inelastic interaction. The frequency of such an interaction is
related to the probability per unit length that an existing electron provides
enough energy for the production (by direct or indirect ionization) of a new,
free electron in the gas. This probability per unit length (that is the first
Townsend coefficient, hereafter denoted by “α”), is estimated by an exponential
fit to the distribution of the photoelectron (longitudinal) drift path length, up to
the point of the ionization initiating the avalanche, as shown in Fig. 4. Values
of the parameter α, estimated with GARFIELD++ simulations, for different
PNtr and drift voltage settings, are compiled in Tables A.2 and A.8

The ionization probability per unit length is expressed in terms of the PNtr,
r, as: α (r) = α (0) + r · β; where β = α (1) − α (0) is the increase of the
ionization probability per unit length offered by the Penning effect for r = 1
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(100%) transfer rate. Indeed, the values of the first Townsend Coefficient in
Table A.2 exhibit such a linear dependence on r and a linear fit results to
α (0) = 0.0519± 0.0003µm−1 and β = 0.0366± 0.0007µm−1.

An electron drifting in a noble gas mixture loses energy with probability β
per unit length, due to the excitation of the noble atoms, independently of the
PNtr value. However, when the first ionization occurs there is a probability

r · β
α (0) + r · β

that the ionization was caused by the Penning effect.

Let us consider a photoelectron, before the first ionization, drifting by ∆x
during a time interval ∆t. On average it undergoes (1− r) · β · ∆x inelastic
interactions, exciting noble atoms and providing enough energy for indirect
ionization but without such an ionization to take place. If the photoelectron
did not lose any energy this way, it would have drifted with a velocity, V0.
However, assuming that the photoelectron gains on average a time, τ , after
each of such energy losses, the following relation holds:

∆t =
∆x

V0
− (1− r) · β · τ ·∆x , or

1

Veff (r)
=

∆t

∆x
=

1

V0
− (1− r) · β · τ (1)

where Veff (r) is the observed, effective drift velocity for PNtr equal to r. Ob-
viously, V0 is the effective drift velocity for r = 1, V0 = Veff (1). Eq. 1 predicts
that by increasing the PNtr value the effective drift velocity of the photoelec-
tron decreases, in accordance with the GARFIELD++ results. Indeed, eq. 1
fits well the drift velocity values of Table A.1 resulting to an estimation of
V0 = 142.6 ± 0.6µm/ns and to a value for the mean time-gain per interaction
τ = 17.9 · 10−3 ± 1.2 · 10−3 ns.

After the photoelectron has initiated an avalanche its effective drift velocity
is determined by the time-gains every time it losses energy, i.e. either due to
excitation of noble atoms or due to direct ionization. However, the energy loss
effect on the drift velocity is independent of whether noble atom excitations
result or not to subsequent ionizations via the Penning effect. Consequently, it
is expected that the effective drift velocity of an avalanche electron is indepen-
dent of the PNtr value, in agreement with the GARFIELD++ results, shown
in Table A.1.

By definition, a photoelectron, before it starts an avalanche, undergoes only
non-new-electron-producing interactions. An avalanche electron undergoes the
same number of such interactions per unit length but in addition ionizes directly
atoms and molecules. Following the argument that more frequent energy losses
result in a larger drift velocity, it is expected that the avalanche electrons drift
faster than the the photoelectron, before the first ionization, for any PNtr value,
in accordance with the GARFIELD++ prediction of Table A.1.

The drift velocity of the avalanche as a whole is also determined by the “time-
gain per interaction” concept, but applied in combination with the electron
multiplication processes during the avalanche evolution, as described in the
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following Section.

4. The Pre-Amplification Region Drift and Development

Following the model assumption, an ionizing electron in the avalanche, every
time it ionizes, will gain a time ξI relative to an electron that undergoes elastic
scatterings only. Any newly produced electron by ionization starts with low
energy; at the start of its path, it suffers less delay due to elastic backscattering
compared to its parent. Therefore, the model assumes that such a newly pro-
duced electron will gain, relative to its parent, a time-gain ρI . The parameters
ξI and ρI in principle should follow a joint probability distribution determined
by the physical process of ionization and the respective properties of interact-
ing molecules. As discussed in Section 3, the collective effect of time-gains ξI
is a change in drift velocity from Vp, which is the photoelectron drift velocity
before ionization, to an effective drift velocity Vea, which is the drift velocity of
an ionizing electron in the avalanche. By taking Vea to be the drift velocity of
any electron in the avalanche, the energy-loss effect on the drift of the parent
electron has been taken into account. On the other hand, the time gain ρI of
a newly produced electron is assumed to follow a distribution with mean value
ρ and variance w2. From that moment onwards, this new electron propagates
with drift velocity Vea, as any other existing electron in the avalanche. Notice
that this way, the model approximates the time gains of the parent and daughter
electrons as uncorrelated variables.

Let us consider an avalanche, which has been developed up to a length x−∆x
and let n (x−∆x) be the number of electrons reaching this plane. Let ∆n be
the number of electrons produced by ionization in the next development step,
of length ∆x. Without loss of generality, the production of the new electrons
(shown in red in Fig. 5) is assumed to take place on the plane at x−∆x.

Figure 5: Schematic representation of the change in the electron multiplicity in two stages of
the avalanche evolution, depicted as a plane at x−∆x and a plane at x.

The average arrival time of the n (x) electrons at a plane on x is expressed
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as:

T0 (x, n (x)) =
1

n (x)

n(x)∑
k=1

tk (x)

=
1

n (x)

[
n(x−∆x)∑
k=1

(tk (x−∆x) + ∆tk) +
∆n∑
j=1

(
tfj (x−∆x) + ∆τj

)]

=
1

n (x)

[
n(x−∆x)∑
k=1

tk (x−∆x) +
∆n∑
j=1

tfj (x−∆x) +
n(x−∆x)∑
k=1

∆tk +
∆n∑
j=1

∆τj

]
(2)

where all the times are measured from the instant of the first ionization that ini-
tiated the avalanche; tk (x) and tk (x−∆x) are the times when the kth electron

reaches the planes on x and x −∆x respectively; tfj (x−∆x) is the time that
the “father” of the jth newly produced electron reaches the plane on x − ∆x
(obviously tfj (x−∆x) is one of the tk (x−∆x), (k = 1, 2, 3, ..., n (x−∆x));
∆tk is the time spent by the kth electron that reached the plane on x−∆x to
arrive at the plane on x; ∆τj is the time spent by the jth electron produced at
x−∆x to arrive at the plane on x.

Due to the fact that a newly produced electron gains a certain time, ρi,(i =

1,∆n) relative to the parent electron, each ∆τj can be expressed as ∆tfj−ρj . No-

tice that: a) since the set
{
tf1 (x−∆x) , tf2 (x−∆x) , tf3 (x−∆x) , ..., tf∆n (x−∆x)

}
can be any size-∆n subset of

{
t1 (x−∆x) , t2 (x−∆x) , t3 (x−∆x) , ..., tn(x−∆x) (x−∆x)

}
,

any of the n (x−∆x) pre-existing electrons has the same probability, ∆n/n (x−∆x),

to produce a new electron, and b) any one of the ∆tfj , j = 1, 2, 3, . . . ,∆n coin-
cides with one of the ∆tk, k = 1, 2, 3, . . . , n (x−∆x). Therefore, by averaging
eq. 2 for all the possible configurations of ∆n newly produced electrons,one gets
T1 (x, n (x)) ≡ 〈T (x, n (x))〉∆n , which is:

T1 (x, n (x)) =
1

n (x−∆x)

n(x−∆x)∑
k=1

tk (x−∆x) +
1

n (x−∆x)

n(x−∆x)∑
k=1

∆tk −
1

n (x)

∆n∑
j=1

ρj

(3)
Furthermore, averaging eq. 3 over the possible values of ∆tk, the mean

time that an avalanche drifts in order to reach a plane on x, T (x, n (x)) ≡
〈T1 (x, n (x))〉∆t , follows the differential relation:

T (x, n (x)) = T (x−∆x, n (x−∆x)) + 〈∆tk〉 −
∆n

n (x)
ρ (4)

where T (x−∆x, n (x−∆x)) =
1

n (x−∆x)

n(x−∆x)∑
k=1

tk (x−∆x) and ρ = 〈ρ〉 is

the mean value of the time-gains.
Finally, using the definition Vea = 〈∆x/∆tk〉, taking the limit for infinites-

imal ∆x and integrating up to an avalanche length L, the following result is
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obtained:

dT (x, n (x)) =
dx

Vea
− dn

n (x)
ρ⇒ T (L,NL) =

L

Vea
− ρ · ln (NL) + C (5)

where NL is the number of the avalanche electrons reaching a plane on L and
C is an integration constant, which is approximated as independent of L for
reasons that will be discussed latter in this Section. Eq. 5 predicts that the
avalanche transmission time depends linearly on the drift length, L, like it is
the case for any individual avalanche electron, but it also depends logarith-
mically on the electron multiplicity of the avalanche. However, the quantity
∆T (NL) = T (L,NL) − L/Vea, does not depend explicitly on the avalanche
length. Consequently, the average residual time 〈∆T (NL)〉L, for all avalanches
with NL electrons arriving on the mesh, depends only on the electron multiplic-
ity, NL. Indeed, symbolizing by G (L|NL) dL the conditional probability of an
avalanche with NL electrons reaching the mesh to have a length in the region
[L,L+ dL], the average residual time is:

〈∆T (NL)〉L =
∞∫
0

[−ρ ln (NL) + C] ·G (L|NL) dL = −ρ ln (NL) + C (6)

Eq. 6 expresses the mean deviation of the avalanche time from the time expected
in case the avalanche speed was equal to the drift velocity of its constituent
electrons.

GARFIELD++ simulations show that this mean time-deviation is described
very well, for a variety of operating parameters, by the logarithmic expression
given in eq. 6, as demonstrated in Fig. 6. The mean value of the time-gain ρ and
the constant term C, were estimated by fitting such GARFIELD++ simulation
results with eq. 6. The estimated values of the above parameters are compiled
in Tables A.3 and A.8 for a variety of PNtr values and drift voltages respectively.

The newly produced electrons should gain per average the same time, at the
beginning of their path, independently of their production mechanism, i.e. via
direct ionization or Penning transfer. Consequently the estimated values of the
parameter ρ should be independent of the PNtr value, as indeed it was found by
fitting GARFIELD++ simulation results and it is shown in Table A.3. More-
over, because the newly produced electrons accelerate and reach equilibrium
faster at higher than lower drift fields, it is expected that the value of the time-
gain parameter, ρ, should decrease as the drift voltage increases in agreement
with the estimated values shown in Table A.8

Eq. 5 has been derived by treating the simultaneous drift and growth of
the avalanche differentially. Thus, the integration constant, C, depends on a
minimum avalanche length, after which the growth of the mean avalanche elec-
tron multiplicity allows for a differential treatment. Such a minimum avalanche
length depends on the avalanche electron multiplication, which in turn depends
on the PNtr rate and the drift voltage, as it can be seen in Tables A.3 and A.8.
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Figure 6: Mean deviation of the time that an avalanche takes to reach the mesh from the
naively expected time (see text) versus the respective avalanche electron-multiplicity. The
points represent results of GARFIELD++ simulations, assuming 50% PNtr, anode voltage
450V and drift voltage 375V . The line represents a fit with eq. 6.

The avalanche drift velocity is determined by expressing the mean avalanche
transmission time, 〈T (L)〉, as a function of the avalanche length, i.e by averaging
eq. 5 over all possible values of the avalanche electron multiplicity,

〈T (L)〉 =
L∫
0

T (L,NL) ·Π (NL|L) dNL (7)

where Π (NL|L) denotes the conditional probability density function (p.d.f.)
of the number of electrons, NL, produced in an avalanche, given the length of
the avalanche, L.

GARFIELD++ simulations have yielded that Π (NL|L) is well approximated
by the Gamma distribution function, P (NL; q(L), θ), with q(L) being the mean
value and θ being the shape parameter. This succesfull approximation is demon-
strated in the top-left plot of Fig. 7.
While the shape parameter is found to be independent of the avalanche length,
the mean value depends exponentially on the the length of the avalanche, i.e.
q (L; aeff ) = 2 · eaeffL, as shown in the right plot of Fig. 7. The exponential
slope aeff (hereafter called “multiplication factor”) is the probability per unit
length for the net production of a new electron. Estimated values of aeff and θ,
using Garfield++ simulations at several values of the PNtr and the drift voltage,
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Figure 7: The points represent Garfield++ simulation results. (top-left) Distribution of the
number of electrons arriving on the mesh, produced in avalanches with length between 144.45
and 144.75 µm. The solid line represents a Gamma distribution function fitted to the simu-
lation results.(top-right) The mean value of the avalanche electron multiplicity on the mesh
versus the length of the respective avalanche. The solid line represents exponential fit to the
simulation results, as described in the text. For completeness, Garfield++ simulation results,
related to the electron multiplicity after the mesh, are also presented in the bottom-row plots.

are compiled in Tables A.4, A.5 and A.85.
Parenthetically it should be noticed that, as the left-bottom plot of Fig. 7
demonstrates, the electron multiplicity after the mesh, for avalanches of a cer-
tain length, also follow a Gamma distribution function, with the same θ value
as the corresponding distribution of the electron multiplicity on the mesh (see
also Table A.5). The mean electron multiplicity after the mesh depends expo-
nentially on the avalanche length, as it is shown in the bottom-right plot of Fig.
7. Moreover, the exponential constant is found to be the same as the respective
multiplication factor, which implies that the mesh transparency is independent
of the avalanche length. Furthermore, as it is deduced from GARFIELD++
simulations for a variety of PICOSEC operation conditions, the mean electron
multipliplicity after the mesh is consistently the 25% of the number of the
avalanche electrons arriving on the mesh, (see Tables A.4 and A.8). Taking into
account that the PICOSEC signal size was found (see Fig. 2) to depend linearly
on the electron multiplicity after the mesh, the constant mesh transparency also
implies that the observed signal size is determined by the number of preampli-
fication electrons arriving on the mesh.

Having expressed the term Π (NL|L) of eq. 7 as a Gamma distribution
function, P

(
NL; q(L) = 2eaeffL, θ

)
, and substituting T (L,NL) from eq. 5, the

average time taken by an avalanche to drift a length L, independently of the

5As expected, both the aeff and θ take larger values as the drift voltage increases. However,
the relative spread, i.e. the RMS over the mean value of the Gamma distribution (= (1 +
θ)−1/2), decreases as a function of the drift field.

13



electron multiplicity, NL, is written as:

〈T (L)〉 =
L

Vea
− ρ ·

L∫
0

ln (NL)P
(
NL; q(L) = 2eaeffL, θ

)
dNL + C (8)

Using the properties of the Gamma distribution function, eq. 8 becomes:

〈T (L)〉 = L

[
1

Vea
− ρ · aeff

]
+ [−ρ ln 2 + C + ρ ln (θ + 1)− ρψ (θ + 1)] (9)

where psi (x) denotes the digamma function.

Eq. 9 relates linearly the mean value of the avalanche transmission time to
the avalanche length. As it is easily verified by using numerical values for the
model parameters (ρ, θ, aeff , Vea and C) from Appendix A, the constant term,
[−ρ ln 2 + C + ρ ln (θ + 1)− ρψ (θ + 1)], takes very small values for all consid-
ered drift voltages and PNtr values. Therefore, the effective avalanche drift

velocity is determined by the inverse of the term

[
1

Vea
− ρ · aeff

]
. Because

both ρ and aeff are positive valued parameters, the model predicts that the
avalanche, as a whole, drifts with higher velocity than the velocity Vea of its
constituent electrons, as it was also found using GARFIELD++ simulations.
Furthermore, the GARFIELD++ simulation results found to be in a very good
quantitative agreement with the model prediction expressed by eq. 9, as it
is demonstrated in Fig. 8. The same agreement holds for all the considered
operating drift voltages and PNtr values.

5. The Transmission Times vs the Avalanche Electron Multiplicity

In Section 1 it was shown that the total time after the mesh determines the
PICOSEC signal arrival time. Nevertheless, as it is discussed in detail in Section
8, the total time after the mesh differs from the respective total time on the mesh
by a constant interval, which is independent of electron multiplicities and drift
lengths. Moreover, in Section 4 it was shown that the mean electron multiplicity
after the mesh, which determines the signal size, is a constant fraction (25%)
of the electron multiplicity on the mesh. Thus, the expression of the mean
total time as a function of the electron multiplicity on the mesh, by properly
integrating eq. 5, will provide the microscopic description of the PICOSEC SAT
dependence on the signal size (shown in Fig. 1).

By employing Bayes’ theorem, the conditional p.d.f, G (L|N), that an avalanche
with N electrons reaching the mesh has a length in the region [L,L+ dL] is ex-
pressed as:

G (L|N) =
p (N |L)R (L)

p (N)
(10)

Here R (L) is the p.d.f. of any avalanche to have a length L; p (N |L) is the
conditional p.d.f. that an avalanche produced N electrons reaching the mesh,
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Figure 8: The average time needed by an avalanche, of certain length, to arrive on the mesh as
a function of the length of the avalanche. The points are GARFIELD++ simulation results for
50% PNtr and 425V drift voltage. The solid line represents the model prediction, expressed
by eq. 9.

given that its length equals L. The normalizing term p (N), defined as p (N) =
x2∫
x1

p (N |L)R (L) dL, expresses the p.d.f that an avalanche has N electrons reach-

ing the mesh and any length within the region x1 ≤ L ≤ x2
6.

In this model, p (N |L) is approximated by the the Gamma distribution func-
tion P

(
N ; q = 2eaeffL, θ

)
, as discussed in Section 4. R (L) is expressed expo-

nentially in terms of the first Townsend coefficient, a, as:

R (L) = R (L; a) = a · exp [a · L]

exp [a · x2]− exp [a · x1]
(11)

Then, the conditional p.d.f. G (L|N) takes the form:

G (L|N) =
P
(
N ; q = 2eaeffL, θ

)
R (L; a)

x2∫
x1

P (N ; q = 2eaeffL, θ)R (L; a) dL

(12)

Using eq. 5, the average transmission time, 〈T (N)〉 =
x2∫
x1

T (N,L)G (L|N) dL is

6The lower integration limit is x1 = 0. However, as the Garfield++ simulations indicate,
the maximum avalanche length, x2, does not reach the value of the full drift gap, D, because
the initial photoelectron takes a minimum distance before it gains enough energy to start an
avalanche. Naturally, this limit depends on the drift voltage, as shown in Table A.8.

15



written as follows:

〈T (N)〉 =
〈L (N)〉
Vea

− ρ lnN + C (13)

where 〈L (N)〉 =
x2∫
x1

L ·G (L|N) dL is the average length of all avalanches result-

ing to N electrons on the mesh.

As discussed in Section 3, the mean transmission time of the photoelectron
before it ionizes, depends linearly on its drift path, D-L, as:

Tp (L) =
D − L
Vp

+ doff (14)

where the constant term, doff , is attributed to the fact that the drift velocity
is a statistical variable, which characterizes the drift of an electron after has
undergone enough scatterings7 in order to be described statistically. The mean
transmission time, from the emission up to the first ionization, of a photoelectron
that initiates an avalanche with N electrons on the mesh, is given as:

〈Tp (N)〉 =

x2∫
x1

Tρ (L)G (L|N) dL =
D − 〈L (N)〉

Vp
+ doff (15)

The total time on the mesh, 〈Ttot (N)〉, is the sum of the two terms given
by eq. 13 and 15.

〈Ttot (N)〉 = 〈Tp (N)〉+〈T (N)〉 = 〈L (N)〉
[

1

Vea
− 1

Vp

]
−ρ lnN+

[
D

Vp
+ C + doff

]
(16)

The third term in eq. 16 represents the total time on the mesh in absence
of any ”time gain” caused by interactions. In such a case the SAT should
be constant (' D

Vp
), determined only by the photoelectron drift velocity and

independent of the signal size. However, due to time gains in the inelastic inter-
actions, the avalanche electrons drift faster than the photoelectron. Thus, the
first term represents the total time gain by a collection of electrons drifting with
Vea relative to a photoelectron drifting the same distance. Finally the second
term represents an extra time gain, due to the fact that each newly produced
electron in the avalanche gains on average a time ρ relative to its parent. Taking
also into account that the average avalanche length is a positive, increasing func-
tion of N, both the above time gain terms increase in absolute as N increases.
Equivalently, eq. 16 predicts that, due to the time gain concepts employed
by our model, large size PICOSEC signals should arrive earlier than smaller

7That is after an initial stage of 3.6 - 4.7 µm along the drift field, as indicated by the
Garfield++ simulations for the drift voltages considered in this work.
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Figure 9: The points represent GARFIELD++ simulation results related to the mean trans-
mission times versus the respective multiplicity of the avalanche electrons arriving on the
mesh, for 50% Penning Transfer rate; 425V and 450V drift and anode voltages respectively:
(red) the transmission time of the photoelectron before the first ionization, (blue) the trans-
mission time of the avalanche from its beginning until the mesh and (golden) the transmission
time of the whole process, from the photoelectron emission until the avalanche reaches the
mesh. The solid lines represent the predictions of eq. 13, 15, 16 respectively. The inset plot
details the dependence of the total time on the number of electrons arriving on the mesh.

pulses in accordans with the experimental observations and the GARFIELD++
simulation results.

Furthermore, as Fig. 9 demonstrates, the model predicts, the photoelec-
tron (eq. 15), the avalanche (eq. 13) and the total (eq. 16) transmission
times and their dependence on the electron multiplicity on the mesh in a very
good agreement with the GARFIELD++ simulation results. Moreover, setting
appropriate values to the model-parameters, e.g. from Table A.8, the model
reproduces successfully the respective Garfield++ results at all the considered
PICOSEC operation conditions.

6. The Timing Resolution versus the Avalanche Length.

Although the PICOSEC timing resolution is related to the spread of the
total-time after the mesh, the developments up to the mesh are much more sig-
nificant for the statistical SAT fluctuations than the passage through the mesh
(for details see Section 8). This Section focuses in modelling the contribution to
the time fluctuations of a) the longitudinal diffusion of the primary photoelec-
tron, and b) the spread of the avalanche transmission time as a whole, i.e. the
statistical spread of the total-time on the mesh. In paricular, the second con-
tribution depends on the diffusion of the individual avalanche electrons, on the
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increase of the electron multiplicity as the avalanche grows and on the statistical
correlation between the drift times of the individual electrons. Also notice that
the avalanche length (L or its residual D-L) is the natural parameter to express
the photoelectron diffusion, as well as the avalanche growth and the correlation
between its electrons.

Figure 10: The points represent GARFIELD++ simulation results. (left) The variance of
the photoelectron transmission time at the point of the first ionization versus the respective
drift length. (right) The variance of the time taken by an avalanche electron to drift a certain
length versus the respective length. The solid curves represent linear fits to the points.

In GARFIELD++ simulations the variance of the photoelectron transmis-
sion time V [Tp (L)], and the variance of the drift time of an avalanche electron
V [Tea (x)] , depend linearly on the respective drift lengths:

V [Tp (L)] = (D − L) · σ2
ρ + Φ (17)

V [Tea (x)] = σ2
0 · x+ φ (18)

The slopes (σ2
p, σ2

0) and the constant terms (Φ, φ) in the above relations are
evaluated by linear fits to Garfield++ simulation results8. Estimated values of
these parameters, for a variety of PICOSEC operating conditions, are compiled
in Tables A.6, A.7 and A.8.
In all the above estimations, the variable Φ acquires negative values. This is
due to the fact that the photoelectron motion at its initial part has not yet
reached statistical equilibrium, as it is apparent in the left plot of Fig. 10. On
the other hand, only positive values were found for φ, e.g. the right plot of Fig.
10. A positive φ value implies that an avalanche electron inherits time spread
before it starts drifting which is, however, consistent with the phenomenological
model advocated in this study. Indeed, all the terms expressing time-gains in
this model are random variables, with variances contributing to the variance

8The ”simulation results” are the variances of the respective time distributions, estimated
by fits with a Wald function, as described in Section 3, Fig. 3
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of the respective drift times. Thus, the constant term φ corresponds to the
variance of the time gained by the first avalanche electron when it initiates the
avalanche. Nevertheless, the contribution of the constant term, φ, in eq. 18 is
much smaller than the part which is proportional to the drift length9 and it will
be ignored in the following.

For an avalanche of length L, initiated by a photoelectron after drifting a
length D − L, the avalanche time T (L) and the photoelectron time Tp (L) are
statistically, mutually uncorrelated. Therefore, the total time on the mesh,
Ttot (L), and its variance, V [Ttot (L)], are expressed as:

Ttot (L) = Tp (L) + T (L)
V [Ttot (L)] = V [Tp (L)] + V [T (L)]

(19)

where V [Tp (L)] is given by eq. 17.

The term V [T (L)] will be evaluated by considering the evolution of the
avalanche between two planes, on x −∆x and on x, as presented in Section 3
and depicted in Fig. 5. The average of the electron arrival times at a plane on
x, expressed by eq. 2, is factorized as the sum of five terms (A, B, C, D and E),
as follows:

T0 (x, n (x)) =

1

n (x)


n(x−∆x)∑
k=1

tk (x−∆x)︸ ︷︷ ︸
A

+

∆n∑
j=1

tfj (x−∆x)︸ ︷︷ ︸
B

+

n(x−∆x)∑
k=1

∆tk︸ ︷︷ ︸
C

+

∆n∑
j=1

∆tfj︸ ︷︷ ︸
D

+

∆n∑
j=1

ρj︸ ︷︷ ︸
E


(20)

As in Section 3, the model treats the times ∆tk (k = 1, 2, 3, ..., n (x−∆x)) as
mutually uncorrelated and independent of the history of pre-existing electrons.
Recall that the times ∆τ , taken by the newly produced electrons to drift be-
tween the planes on x − ∆x and x, is the difference of two random variables:
∆τj = ∆tfj − ρj (j = 1, 2, ...,∆n). The first variable ∆tfj has the same statis-
tical properties as the times ∆tk of the pre-existing electrons. The time-gains
acquired bt the new electrons ρj (j = 1, ...,∆n) are mutually uncorrelated, and
they are also uncorrelated with anyone of the ∆tk’s.

As in Section 3, the model assigns a probability ∆n/n (x−∆x) to each of
the pre-existing electrons at the plane on x −∆x to ionize and produce a new
electron. Under these assumption, the terms B and D in eq. 20, when averaged
for all possible configurations of ∆n newly produced electrons, are transformed

9According to GARFIELD++ simulations, at all voltage settings considered in this study,
the vast majority of the produced avalanches have lengths greater than 100µm, even in the
case of 0% PNtr. For a 100µm long avalanche, the time variance of an avalanche electron
that arrives on the mesh, is more than 70 times larger than the contribution of the constant
term φ.
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to:

B1 = 〈
∆n∑
j=1

tfj (x−∆x)〉∆n =
∆n

n (x−∆x)

n(x−∆x)∑
k=1

tk (x−∆x)

D1 = 〈
∆n∑
j=1

∆tfj 〉∆n =
∆n

n (x−∆x)

n(x−∆x)∑
k=1

∆tk

(21)

Considering the aforementioned correlation relations between the individual
drift times and time gains, the covariances cov[A,B1] and cov[C,D1] are non-
zero, while all the other term combinations have zero covariances. Consequently,
the variance of T1 (x, n (x)) = 〈T0 (x, n (x))〉∆n is expressed as:

V [T1 (x, n (x))] =
1

n2 (x)
(V [A] + V [B1] + V [C] + V [D1] + V [E] + 2cov [A,B1] + 2cov [C,D1])

(22)
where

V [A] =
n(x−∆x)∑
k=1

(
E
[
t2k (x−∆x)

]
− E2 [tk (x−∆x)]

)︸ ︷︷ ︸
σ2
k(x−∆x)

+
n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

(E [tk (x−∆x) tl (x−∆x)]− E [tk (x−∆x)]E [tl (x−∆x)])︸ ︷︷ ︸
ckl

=
n(x−∆x)∑
k=1

σ2
k (x−∆x) +

n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

ckl

(23)

V [B1] =

(
∆n

n (x−∆x)

)2

·

(
n(x−∆x)∑
k=1

σ2
k (x−∆x) +

n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

ckl

)
=(

∆n

n (x−∆x)

)2

· V [A]

(24)

V [C] =

n(x−∆x)∑
k=1

(
E
[
(∆tk)

2
]
− E2 [∆tk]

)
︸ ︷︷ ︸

δ2k

=

n(x−∆x)∑
k=1

δ2
k (25)

V [D1] =

(
∆n

n (x−∆x)

)2 n(x−∆x)∑
k=1

δ2
k =

(
∆n

n (x−∆x)

)2

V [C] (26)

V [E] =

∆n∑
j=1

(
E
[
(ρj)

2
]
− E2 [ρj ]

)
︸ ︷︷ ︸

d2j

=

∆n∑
j=1

d2
j (27)
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Similarly, the covariance terms are expressed as:

cov [A,B1] ==
∆n

n (x−∆x)
V [A] (28)

cov [C,D1] ==
∆n

n (x−∆x)
V [C] (29)

Substituting eq. 23 − 29 into eq. 22, the variance becomes:

V [T1 (x, n (x))] =
1

n2 (x−∆x)

(
n(x−∆x)∑
k=1

σ2
k (x−∆x) +

n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

ckl

)
+

1

n2 (x−∆x)

n(x−∆x)∑
k=1

δ2
k +

1

n2 (x)

∆n∑
j=1

d2
j

(30)

Taking into account that all ∆tk follow the same distribution, with a vari-
ance, δ2 , proportional to the corresponding drift distance, ∆x, i.e. δ2 = σ2

0 ·∆x ,
and that the time-gains ρj (j = 1, 2, 3, ...,∆n) follow a distribution with variance
w2, the two last terms in eq. 30 are written as:

1

n2 (x−∆x)

n(x−∆x)∑
k=1

δ2
k =

σ2
0 ·∆x

n (x−∆x)
and

1

n2 (x)

∆n∑
j=1

d2
j =

∆n

n2 (x)
w2 (31)

In addition, the total avalanche time variance at the plane on x−∆x is:

V [T1 (x−∆x, n (x−∆x))] =
1

n2 (x−∆x)

n(x−∆x)∑
k=1

σ2
k (x−∆x) +

n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

ckl


(32)

Then, substituting eq. 31, eq. 32, and the approximation n2(x) ' n(x) · n(x−
∆x) into eq. 30, one gets:

V [T1 (x, n (x))]− V [T1 (x−∆x, n (x−∆x))]

' σ2
0 ·∆x

n (x−∆x)
− w2

(
1

n (x)
− 1

n (x−∆x)

)
(33)

which expresses the increase of the avalanche-time variance as the avalanche
grows between two planes, on x−∆x and on x, given that n (x−∆x) electrons
reach the first plane and ∆n more electrons reach the second plane.

For all the avalanches evolving up to a length x, the variance of the avalanche-
time can be obtained by averaging eq. 33 for all possible values of n (x−∆x)
and ∆n. Specifically:

〈V [T1 (x, n (x))]− V [T1 (x−∆x, n (x−∆x))]〉n,∆n
∆x

= σ2
0〈

1

n (x−∆x)
〉n,∆n −

w2

∆x
〈 1

n (x)
− 1

n (x−∆x)
〉n,∆n

(34)
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Assuming that n (x) follows the Gamma distribution function, the mean
value of the inverse multiplicity, 1/n (x), is given by the formula:

〈 1

n (x)
〉n =

(θ + 1)

2θ
exp (−aeff · x) (35)

which describes very well the GARFIELD++ simulation results, as it is demon-
strated in Fig. 11.

Figure 11: Each points represents the mean value of the inverse avalanche-electron multiplicity
for simulated avalanches of a certain length. The GARFIELD++ simulation package has
been used, assuming 50% Penning Transfer Rate, a drift voltage of 425V and anode voltage
of 450V . The solid curve represents graphically eq. 35 with the proper values for the physical
parameters, from Table A.8.

Substituting eq. 35 in eq. 34, the differential increase of the variance is
expressed as:

〈V [T1 (x)]− V [T1 (x−∆x)]〉n,∆n
∆x

= σ2
0

(θ + 1)

2θ
exp (−aeff · x) · exp (aeff ·∆x)

− w
2

∆x

(θ + 1)

2θ
exp (−aeff · x) · (1− exp (aeff ·∆x))

(36)
Expanding the r.h.s of eq. 36 with respect to ∆x, keeping up to first order

terms, and letting ∆x going to zero, the differential equation that expresses the
evolution of the avalanche-time variance is deduced to:

dV [T (x)]

dx
=

(θ + 1)

2θ
exp(−aeff · x)

[
σ2

0 + w2aeff
]

(37)

Then, by integrating up to an avalanche-length L, the variance of the avalanche-
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time at avalanche-length L is:

V
[
T (L)

]
=

(θ + 1)

2θ
[σ2

0 + w2aeff]
1− exp(−aeff · L)

aeff
(38)

Therefore, the variance of the total time on the mesh, according to eq. 19,
is:

V
[
Ttot(L)

]
= V

[
T (L)

]
+ V

[
TP (L)

]
= (θ+1)

2θ [σ2
0 + w2aeff] 1−exp(−aeff·L)

aeff
+ (D − L) · σ2

P + Φ
(39)

which is expected to describe the GARFIELD++ simulations for photoelec-
tron drift lengths long enough to guarantee statistical equilibrium (typically
(D − L) > 10µm).

Model predictions for the time spreads, expressed by eqs. 17, 38 and 39,
are shown in Fig. 12 to be in a very good agreement with the GARFIELD++
simulations results. The same very good agreement was found for all PNtr
values and drift voltages considered in this work.

While the mean value of the time-gain parameter ρ has been evaluated from
GARFIELD++ simulations ( see Fig. 6), there is no similar, straightforward
way to estimate the value of its variance (w2 = V [ρ]). As an alternative, the
double lines in Fig. 12 represent the predictions of eq. 38 and 39 for w = 0 and
w = ρ, i.e. either assuming that the time-gain per newly produced electron is
a constant or that it follows a very broad physical distribution with an RMS
equal to the 100% of its mean value. Apparently, by imposing a 100% spread
on ρ, only a small change is induced to the model prediction.

As Fig. 12 indicates, signals produced by long avalanches achieve good
resolution because they are associated with short drifting photoelectrons, which
suffer small longitudinal diffusion. The model predicts that the contribution
of short avalanches to the timing resolution depends on their length. However
as the avalanche length grows the variance of the avalanche time reaches a
plateau. At the operational parameter settings considered in this study, the
vast majority of the GARFIELD++ simulated avalanches in the PICOSEC pre-
amplification region are too long to reveal the increase of the avalanche time
spread. In order to check the model prediction in detail, special GARFIELD++
simulations of shorter pre-amplification avalanches were performed. Two groups
of such simulation results are also shown, as green points, in the above Figure,
demonstrating the success of the model to predict the avalanche time spread at
all avalanche lengths.

Nevertheless, the predicted spread of the photoelectron time seems to de-
viate from the GARFIELD++ points at very large avalanche lengths (short
photoelectron drift paths), due to the inadequacy of eq. 17 to describe the pho-
toelectron longitudinal dispersion at the beginning of its drift path, i.e. before
it reaches statistical equilibrium through multiple scatterings. However, this
small deviation appears in the region of very large avalanche lengths, where the
timing resolution is practically determined by the avalanche time spread.
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Figure 12: The points show results of GARFIELD++ simulations assuming 50% PNtr, 425V
drift and 450V anode voltages, versus the respective length of the avalanche. The golden
points depict the spread of the total time on the mesh. The red and blue (plus green) points
represent spreads os the primary photoelectron time and the avalanche time, respectively. The
corresponding model predictions, for the two w values discussed in the text, are presented as
solid lines.

7. The timing Resolution versus the Electron Multiplicity on the
Mesh

GARFIELD++ simulations showed that the electron multiplicity on the
mesh determines the PICOSEC signal size (see Sections 1 and 4). For getting
insight on the dependence of the timing resolution on the signal amplitude, the
effects of the photoelectron drift and the preamplification avalanche develop-
ment are quantified as functions of the electron multiplicity on the mesh. The
other, weaker effect on the timing resolution, i.e. the passage of the avalanche
electrons through the mesh, is discussed in Section 8.

The variance of the avalanche time can be evaluated as a function of the
electron multiplicity on the mesh, NL, by averaging eq. 33 over n (x), under
the condition that at the end of the avalanche development, i.e. at x = L,
the observed electron multiplicity, n (L), should equal NL. Measuring from the
point of the first ionization, the conditional p.d.f., Π (n (x) |n (L) = NL), that
an avalanche has n (x) electrons at a plane on x given that it has NL electrons
at a plane on L (L > x), can be expressed as:

Π
(
n(x)|n(L) = NL

)
=

Π
(
n(L) = NL|n(x)

)
·Π
(
n(x)

)
Π
(
n(L) = NL

) (40)
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The term Π (n (x)) denotes the p.d.f. that an avalanche has n (x) electrons at a
plane on x. It is assumed to be described by the Gamma distribution function,
i.e. Π (n (x)) = P (n(x); q = 2eaeffx, θ).

The other tern in the numerator of eq. 40, Π (n (L) = NL|n (x)), is the
conditional p.d.f that an avalanche has NL electrons at a plane on L, given
that it has n (x) electrons at a plane on x. Assuming that each of the n (x)
electrons will start an independent avalanche and each avalanche will evolve
until it reaches the plane on L, there will be n (x) statistically identical and
independent avalanches, each of length L − x. Then, Π (n (L) = NL|n (x)) can
be approximated by the convolution of n (x) Gamma distributions, resulting to
the expression:

Π
(
n(L) = NL|n(x)

)
=

n(x)times︷ ︸︸ ︷
P1(n)⊗ P1(n)⊗ · · · ⊗ P1(n)

= 1

q
(
L−x

) (θ+1)n(x)(θ+1)

Γ
(
n(x)·(θ+1)

) ·( NL

q
(
L−x

))n(x)(θ+1)−1

· exp

[
− (θ + 1) NL

q
(
L−x

)]
(41)

where, q (L− x) is the mean multiplicity of a single avalanche of length L− x.
The mean value and the variance of the above p.d.f. are n (x) · q (L− x) and

n (x)·q
2 (L− x)

θ + 1
, respectively. A drawback in expressing Π (n (L) = NL|n (x)) as

in eq. 41 is that n (x) should be treated as an integer while NL as a real number.
Alternatively, by invoking the Central Limit Theorem, a Gaussian distribution
can be used, in case that n (x) represents a large number of electrons, i.e.

Π
(
n(L) = NL|n(x)

)
=

1√
2π · σ2(L− x)

exp

[
−
(
n(x) · q

(
L− x

)
−NL

)2
2 · n(x) · σ2

(
L− x

) ]
(42)

where σ2 (L− x) is the variance of a single avalanche of length L−x. The p.d.f.
expressed by eq. 42 has the same mean value and variance as the p.d.f of eq.
41. It should be emphasized that eq. 42 is strictly valid only in case that n (x)
is an integer parameter. However, in order to simplify numerical calculations,
n (x) is treated as a continues variable.

The normalizing term, Π
(
n(L) = NL

)
, in the denominator of eq. 40 is

defined as:

Π
(
n(L) = NL

)
=
∞∑
n=0

Π
(
n(L) = NL|n

)
·Π(n) '

∞∫
0

Π
(
n(L) = NL|n(x)

)
·Π
(
n(x)

)
dn(x)

(43)
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Then, having determined the functional form of Π (n (x) |n (L) = NL), it is
straightforward to average properly eq. 33, imposing the condition that the
electron multiplicity at an avalanche length L, equals NL.

Using eq. 33 and the following definitions:

〈
V (x)

〉
n(L)=NL

≡
∞∫

0

V
[
T1

(
x, n(x)

)]
· P
(
n(x)|n(L) = NL

)
dn(x)〈

V (x−∆x)
〉
n(L)=NL

≡
∞∫

0

V
[
T1(x−∆x, n(x−∆x)

)]
· P
(
n(x−∆x)|n(L) = NL

)
dn(x−∆x)

〈
1

n(x)

〉
n(L)=NL

≡
∞∫

0

1

n(x)
· P
(
n(x)|n(L) = NL

)
dn(x)

(44)

the average increase of the avalanche time variance, between the planes on x−∆x
and x, under the condition that at x = L the electron multiplicity equals NL,
is written as:

〈V (x)〉n(L)=NL − 〈V (x−∆x)〉n(L)=NL

= σ2
0 ·∆x〈

1

n (x−∆x)
〉n(L)=NL − w2

(
〈 1

n (x)
〉n(L)=NL − 〈

1

n (x−∆x)
〉n(L)=NL

)
(45)

Notice that the imposed condition, n (L) = NL, has forced the averages,
〈1/n (x)〉n(L)=NL and 〈V (x)〉n(L)=NL , to be also function of NL. Hereafter,
terms symbolized as 〈• (x)〉n(L)=NL must be considered as functions of both x
and NL.

A recursive summation of eq. 45, starting at x = L and stopping at x = 0,
in steps of size ∆x, results to:〈
V (L)

〉
n(L)=NL

−
〈
V (0)

〉
n(L)=NL

= σ2
0 ·∆x

L/∆x∑
i−1

〈
1

n(L−i·∆x)

〉
n(L)=NL

− w2

(〈
1

n(L)

〉
n(L)=NL

−

〈
1

n(0)

〉
n(L)=NL

)
(46)

At the limit of ∆x going to zero and using that〈
V (0)

〉
n(L)=NL

= 0,

〈
1

n(0)

〉
n(L)=NL

=
1

2
,

〈
1

n(L)

〉
n(L)=NL

=
1

NL

eq. 46 becomes

〈
V (L)

〉
n(L)=NL

= σ2
0 ·

L∫
0

〈 1

n(x)

〉
n(L)=NL

dx− w2
( 1

NL
− 1

2

)
(47)
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expressing the variance of the avalanche time, when the electron multiplicity on
the mesh is NL and given that the avalanche length equals L.

The first term in the above equation is a double integral, which is easily
evaluated by numerical integration, for any L and NL values, using eq. 44 with
the definition expressed by either eq. 42 or 43, as well as setting appropriate
values to the relevant model parameters (σ0, θ and aeff ) from Table A.8.

In order to express the variance of the avalanche time as a function of, only,
the electron multiplicity on the mesh, N, eq. 47 should be integrated considering
the contribution of any avalanche, of any avalanche length L, which produces
N electrons arriving on the mesh (NL = N). Naturally, each such contribution
should be weighted by the likelihood that such an avalanche is produced, which
is given by the p.d.f G(L|N), defined with eq. 12.

Let us consider a sample of avalanches with N electrons on the mesh. Schemat-
ically, this sample comprises many (infinite) sets, each set consisting of avalanches
with a certain length, L, and it has a population proportional to G(L|N).
The mean avalanche time in a set is T (N,L) and the respective variance is〈
V (L)

〉
n(L)=N

. In the hypothetical case that all the above subsets had the same

mean avalanche time, the time variance of the whole sample will be given simply
by the weighted sum of the respective variances of the subsets. However, due
to the fact that mean avalanche time varies among the sets, the variance of the
avalanche time of all avalanches in the sample , i.e. for any possible avalanche
length, should be evaluated according to eq. B.5 (see Appendix B). Then, the
variance of the avalanche time, V [T (N)], when the electron multiplicity on the
mesh is N, is given by the following expression:

V [T (N)] =

x2∫
x1

〈
V (L)

〉
n(L)=N

·G(L|N)dL+

x2∫
x1

T (N,L)2 ·G(L|N)dL−

[ x2∫
x1

T (N,L) ·G(L,N)dL

]2 (48)

Physically, the variance of the photoelectron time, V [Tp(L)], depends only
on its drift length, D-L, as expressed in eq. 17. Since the photoelectron drift
length D-L is the residual of the respective avalanche length L, which in turn
determines the mean multiplicity of the avalanche electrons, the variance of the
photoelectron time is indirectly connected to the electron multiplicity on the
mesh, N.

The variance of the photoelectron time, V [Tp(N)], is expressed in eq. 49 as
a function of N, by weighting eqs. 14 and 17 with G(L|N), integrating over the
avalanche length and applying eq. B.5 as before.

27



Figure 13: The points represent the transmission time spread evaluated using GARFIELD++
simulations, with 50% Penning Transfer Rate and 425V drift and 450V anode voltage re-
spectively. The solid lines represent the model predictions for w = 0 and w = ρ as discussed
in Section 5. The bottom plot (golden) shows the total time spread on the mesh versus the
multiplicity of pre-amplification electrons on the mesh. The top, left plot (blue) presents
the spread of the avalanche time, whilst the top right plot (red) represents the spread of the
photoelectron time.

V [Tp(N)] =

x2∫
x1

V [Tp(L)]·G(L|N)dL+

x2∫
x1

T 2
p (L)·G(L|N)dL−

[ x2∫
x1

Tp(L)·G(L|N)dL

]2

(49)

Finally, the variance of the total time on the mesh is expressed in accordance
to eq. B.5 as:

V [Ttot(N)] =

x2∫
x1

[
V [Tp(L)] +

〈
V (L)

〉
n(L)=N

]
·G(L|N)dL

+

x2∫
x1

[
T (N,L) + Tp(L)

]2
·G(L|N)dL−

[ x2∫
x1

[
T (N,L) + Tp(L)

]
·G(L|N)dL

]2

(50)
Notice that eq. 50 is not the just sum of eq. 48 and eq. 49, as it would be

the case if the photoelectron and avalanche contributions to the total-time, ex-
pressed as functions of the electron multiplicity on the mesh, were uncorrelated.
This correlation, which is apparent in the GARFIELD++ simulations shown in
Fig. 13, is caused by the fact that the same number of pre-amplification elec-
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trons arriving on the mesh can be produced by avalanches of different length,
while the mean avalanche time depends on the avalanche length.

The predictions of eqs. 48-50, are shown in good agreement with the cor-
responding GARFIELD++ simulation results in Fig. 13. Moreover, the model
found to reproduce successfully the related Garfield++ simulation results at all
the operational conditions considered in this study.

However, for small values of electron multiplicity on the mesh, the time-
spreads predicted by our model are systematically smaller than the related
GARFIELD++ simulation results. This underestimation results from the in-
adequacy of the employed p.d.f’s to approximate accurately the avalanche sta-
tistical properties at its very beginning (small avalanche length, low electron
multiplicity) and it is discussed further in Section 8.

8. Resolution effects due to electrons traversing the mesh

GARFIELD++ simulations show that, at all voltage settings and PNtr val-
ues considered in this study, the transport of the pre-amplification electrons
through the mesh reduces their multiplicity by factor of four, which remains
constant independently of the avalanche length and the electron multiplicity on
the mesh (see Fig. 7 and related comments in Section 4). The passage through
the mesh was found to increase the total time after the mesh, relative to the to-
tal time on the mesh, as well as the related time spread, i.e. delaying the signal
arrival time and deteriorating the timing resolution.The simulations show that
the added delay depends only on the applied drift voltage, being independent of
the preamplification avalanche length and the electron multiplicity on the mesh,
as it is demonstrated in Fig. 14. However, the increase of the total time spread
was found to depend on both the applied drift field and the avalanche charac-
teristics, as it is shown in Figs. 15 and 16. At high drift voltages, although the
electron multiplicity is reduced by the same factor of four, the mesh-effect on the
total time spread is getting insignificant, e.g. at 425 V the spread of the total
time after the mesh was found to be almost the same with that of the total time
on the mesh. Such an observation signifies the importance of the correlations
between the individual arrival times of the preamplification electrons (on and
after the mesh) in determining the mesh influence on the timing resolution.

Consider a pre-amplification avalanche of length L with N electrons arriving
on the mesh and let Ttot be the total time on the mesh and V [Ttot] be its
variance. Then,

Ttot(L,N) = T (L,N) + Tp(L) =
1

N

N∑
k=1

tk + Tp(L) (51)

where Tp is the photoelectron time, depending only on its drift length (D-L)
as in eq. 14, and tk(k = 1, 2, ..., N) are the pre-amplification electron arrival
times on the mesh, starting from the instant of the first ionization. According
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Figure 14: The points represent GARFIELD++ simulation results, assuming 50% PNtr, 450
V and 350 V drift and anode voltage, respectively. The difference between the total time after
the mesh and the total time on the mesh is shown versus the length of the respective avalanche
and versus the electron multiplicity on the mesh in the left and right plot, respectively. The
solid curves represent fits by a constant function.

to eq. 5, the avalanche arrival time (and consequently the total arrival time) is
a function of both L and N.

Because Tp is uncorrelated with every one of the tk’s, the variance, V [Ttot],
is expressed as:

V [Ttot(L,N)] = V

[
1
N

N∑
k=1

tk

]
+ V [Tp(L)] = V

[
1
N

N∑
k=1

tk

]
+ σ2

p · (D − L) + Φ︸ ︷︷ ︸
V [Tp(L)]

(52)
where V [Tp(L)] = σ2

p · (D−L) + Φ is, according to eq. 17, the time variance of
the photoelectron at the point of the first ionization. As discussed in Section 5,
the arrival times of the pre-amplification electrons are heavily inter-correlated.
The first term in eq. 52 is expressed analytically as:

V

[
1
N

N∑
k=1

tk

]
=
σ2

0 · L
N

+
1

N2

N∑
i=1

N∑
j=1,j 6=i

Cij (53)

where σ2
0 has been defined in Section 5 as the variance per unit length of a single

electron in the avalanche and Cij symbolizes the covariance between the arrival
times of the ith and jth avalanche electrons.

Ignoring any new electron production during the transmission through the
mesh, let M be the number of electrons passing through the mesh, Tm be the
total arrival time right after passing the mesh (i.e. the average of the M arrival
times on a plane just after the mesh) and V [Tm] be the corresponding variance.
Then,

Tm(L,N) = 1
M

M∑
k=1

tk + 1
M

M∑
k=1

∆tk + Tp(L) (54)
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where ∆tk is the extra time needed by the kth electron to arrive at the plane
just after the mesh. Assuming that each of the N electrons arriving on the mesh
has the same probability, M/N, to pass through the mesh10, eq. 54 is written
as:

Tm(L,N) = 1
M

M
N

N∑
k=1

tk + 1
M

M
N

N∑
k=1

∆tk + Tp(L) = Ttot(L,N)+ < ∆t >

(55)
where < ∆t > is the mean time needed by an electron to pass through the
mesh. Eq. 55 predicts that the total arrival time after the mesh is the total
arrival time on the mesh delayed by a constant time, which is independent of
the avalanche characteristics, as observed in the detailed GARFIELD++ sim-
ulation. Naturally < ∆t >, being the drift time of an electron traversing the
mesh, depends on the electric field around the mesh.

Due to the fact that the terms, 1
M

M∑
k=1

tk, 1
M

M∑
k=1

∆tk and Tp, in eq. 54, are

mutually uncorrelated, the variance of the total time after the mesh is expressed
as:

V [Tm(L,N)] = V

[
1

M

M∑
k=1

tk

]
+ V

[
1

M

M∑
k=1

∆tk

]
+ V [Tp

[
(L
)
] (56)

The first term in eq. 56 is written, in analogy to eq. 53, as:

V

[
1

M

M∑
k=1

tk

]
=
σ2

0 · L
M

+
1

M2

M∑
i=1

M∑
j=1,j 6=i

Cij (57)

where Cij have been defined in eq. 53.
Eq. 57 can be further simplified by exploring further the observation that any
one of the pre-amplification electrons has the same probability to traverse the

mesh. Then, noticing that the covariance term,
M∑
i=1

M∑
j=1,j 6=i

Cij , in eq. 57 com-

prise M(M − 1) Cij terms while the corresponding term in eq. 53 is the sum of
N(N − 1) Cij terms, eq. 57 can be approximated as:

V

[
1

M

M∑
k=1

tk

]
=
σ2

0 · L
M

+
1

M2

M(M − 1)

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

Cij

' σ2
0 · L
M

+
1

N2

N∑
i=1

N∑
j=1,j 6=i

Cij

(58)

10Indeed, the passage of an electron through the mesh is determined by the position of
its impact point on the mesh; consequently if the same avalanche is shifted parallel to its
longitudinal axis, a different subset of the N arriving electrons will pass through the mesh.
This is equivalent to giving the same probability, M/N, to each of the N arriving electrons to
pass through the mesh.
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Due to the fact that the times ∆tk are mutually uncorrelated, the second term
in eq. 56, is written as:

V

[
1

M

M∑
k=1

∆tk

]
=
δ2

M
(59)

where δ2 is the variance of the time taken by an electron to pass through the
mesh. Substituting eq. 58 and 59 into eq. 56, the variance of the total time
after the mesh is expressed as:

V [Tm(L,N)] =
σ2

0 · L
M

+
1

N2

N∑
i=1

N∑
j=1,j 6=i

Cij +
δ2

M
+ V [Tp(L)] (60)

Subsequently, eq. 53 is used to eliminate the double sum of the covariance terms
and the variance of the total time after the mesh is expressed by the following
formula:

V [Tm(L,N)] = σ2
0 · L

( 1

M
− 1

N

)
+
δ2

M
+ V [Ttot(L,N)] (61)

The average ratio M/N expresses the electron transparency, tr, of the mesh,
which retains the same mean value at all the operational conditions considered
in this work. Using the mesh transparency to eliminate M, eq. 61 is simplified
to:

V [Tm
(
L,N

)
] =

1

N

[
σ2

0 · L
( 1

tr
− 1
)

+
δ2

tr

]
+ V [Ttot

(
L,N

)
] (62)

Eq. 62 predicts an increase of the total time variance, V [Tm(L,N)]−V [Ttot(L,N)],
which depends on the electron multiplicity, N, on the electron transparency of
the mesh, tr, and on the avalanche length L.

By averaging properly eq. 62 over all possible N, i.e. following the procedure
described in Section 6, the variance of the total time after the mesh is expressed
as a function of the avalanche length as:

V [Tm(L)] =
〈
V [Tm(L,N)]

〉
N

=
θ + 1

2θ
exp

[
−aeffL

]
·

[
σ2

0 ·L
( 1

tr
−1
)
+
δ2

tr

]
+V
[
Ttot(L)

]
(63)

where the Gamma distribution property
〈

1
N

〉
= θ+1

θ<N> = θ+1
2θ exp[−aeffL] has

been used, and the last term, V [Ttot(L)] =< V [Ttot(L,N)] >N , is given by eq.
39.
Consequently, the mesh contribution to the total time variance, which deter-
mines the PICOSEC time resolution, is given in terms of the avalanche length
as:

∆V (L) = V [Tm(L)]− V [Ttot(L)] =
θ + 1

2θ
exp[−aeffL] ·

[
σ2

0 · L
( 1

tr
− 1
)

+
δ2

tr

]
(64)
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Figure 15: The points represent GARFIELD++ simulation results concerning the spread of
the total time on the mesh (golden points) and the spread of the total time after the mesh
(black points) versus the avalanche length. The solid lines represent predictions based on eq.
63. The double lines indicate the systematic uncertainty due to the value of the w parameter,
discussed in Section XX. The voltage settings considered in these comparisons were 450V at
the anode and 325V (left plot), 350V (center plot) and 400V (right plot) drift voltages.

The variance of the total time after the mesh can be also expressed as a
function of the electron multiplicity on the mesh, having properly averaged eq.
62 over all possible avalanche lengths, as:

V
[
Tm(N)

]
=
〈
V [Tm(L,N)]

〉
L

=
1

N

[
σ2

0 ·
〈
L(N)

〉( 1

tr
− 1
)

+
δ2

tr

]
+ V [Ttot(N)]

(65)
where the last term, V [Ttot(N)] =

〈
V [Ttot(L,N)]

〉
L

, is given by eq. 50 and the

averaged length < L(N) > (=
x2∫
x1

L · G(L|N)dL) has been defined in Section

4. Then, the mesh contribution to the PICOSEC resolution is expressed as
function of N, as:

∆V (N) = V [Tm(N)]− V [Ttot(N)]
〉

=
1

N

[
σ2

0 ·
〈
L(N)

〉( 1

tr
− 1
)

+
δ2

tr

]
(66)

Eq. 65 and 66 can be easily reformulated as functions of the number M, of
electrons that pass through the mesh, by using the transformation M = tr ·N ;
recall that M was found to be proportional to the PICOSEC e-peak amplitude.

In the above description of the electron transport through the mesh two
sources contribute to the increase of the time variance: i) an extra time spread
due to the electron drift in the inhomogeneous electric field around the mesh
and ii) the statistical effect caused by the depletion of the number of, mutually
correlated, avalanche electrons.
The first contribution is expressed by the term proportional to δ2 in eq. 62 or
equivalently in eq. 64 and 66. The time-spread δ depends on the PICOSEC
operational conditions and it is treated as an input parameter in this model.
Values of δ, which have been evaluated using GARFIELD++ simulations, as-
suming several drift voltages, are compiled in Table A.8, exhibiting a decreasing
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Figure 16: The points represent GARFIELD++ simulation results. The left column plots
show the spread of the total time on the mesh (golden points) and after the mesh (black
points) versus the nelectron multiplicity on the mesh. The right column plots display the
mesh contribution (that is the square root of the difference between the variance of the total
time after and on the mesh) versus the electron multiplicity on the mesh. The solid lines
represent predictions of eqs. 65 and 66. The double lines represent the systematic uncertainty
due to the unknown value of the W model-parameter. The voltage settings considered in
these comparisons were 450V at the anode and 325V (top row), 350V (middle row) and
400V (bottom row) drift voltages.
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functional dependence on the drift voltage. However, the terms proportional to
δ2 contribute to the increase of the time variance (e.g. in eqs. 62, 64 and 66)
much weaker than the other terms, which are related to statistical correlations.
Due to correlation terms, the variance of the total-time after the mesh, eq. 61,
is not proportional to the variance of the total time on the mesh . The mesh
adds to the variance of the total time on the mesh a term which is almost pro-
portional to L · exp[−aeffL] when expressed as a function of L (see eq. 64),

or almost proportional to <L(N)>
N (see eq. 66) when expressed as a function of

N. As the drift voltage increases and the electron multiplication factor, aeff ,
increases, both the above terms11 decrease for all L and N. Thus, the mesh
influence on the timing resolution weakens as the drift field increases, as the
GARFIELD++ simulations demonstrate.
Moreover, the model was found in a very good agreement with the GARFIELD++
simulations in describing quantitatively the mesh effect on the timing resolu-
tion, for all the PICOSEC operational conditions considered in this work, as it
is demonstrated in Figs. 15 and 16.

9. Concluding remarks and further applications

This work employed the comparison of experimental data with detailed sim-
ulations, based on the GARFIELD++ package and complemented with a sta-
tistical description of the electronic signal formation, to identify the microscopic
quantities that determine the PICOSEC timing characteristics. Subsequently, a
stochastic model was developed that describes the properties of the above quan-
tities, offering a phenomenological, microscopic interpretation of the observed
timing properties of the detector.
The model is based on: i) the fact that an electron drifting in a gas under
the influence of an homogeneous electric field achieves higher drift velocity in
case that, besides of scattering elastically, it also loses energy through inelastic
interactions, and ii) the assumption that a newly produced electron through
ionization acquires at production a certain time-gain relative to its parent and
subsequently drifts with the same velocity as the parent electron. The input
parameters , compiled in Table A.8, are commonly used statistical variables12 ,
which have been evaluated by analysing GARFIELD++ simulation results.

The quantitative predictions of the model have been compared extensively
with the related GARFIELD++ simulation results and found in a very good
agreement at all the operating PICOSEC conditions considered in this study,
demonstrating the success of this stochastic interpretation. However, a weak
but systematic deviation of the model predictions from the GARFIELD++ re-

11In case that the electron multiplication factor increases, the average length of the
avalanches that produce N pre-amplification electrons, < L(N) >, decreases.

12With the only exception of the time-gain parameter ρ, which has been introduced in this
work.
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Figure 17: Distributions of the avalanche length, produced by GARFIELD++ simulations
(assuming: 50% Penning Transfer Rate, 425V drift and 450V anode voltages) in case that
the multiplicity of pre-amplification electrons is less than 120 (left plot), between 400 and 440
(center plot) and 1230 and 1300 (right plot). The solid lines represent the related prediction
of the distribution function G(L|N) defined with eq. 12.

sults has been observed at low electron multiplicities on the mesh. Indeed, as
shown in Fig. 9 and 13, the model predictions of the mean value and the spread
of avalanche time deviate from the GARFIELD++ points at avalanche elec-
tron multiplicities less than 300, for 50% Penning Transfer Rate, 425V drift
and 450V anode voltage. As already stated, such deviations result from the
inadequacy of the employed p.d.f’s to approximate accurately the avalanche
statistical properties at its very beginning (small avalanche length, low electron
multiplicity). As an example, the model predictions of both the mean value and
the variance of the avalanche time, i.e eq. 13 and eq. 48, utilize the function
G(L|N). Recall that this conditional p.d.f., defined in Section 4 by eq. 12,
expresses the distribution of the length of an avalanche given that the avalanche
electron multiplicity is N. Predictions of eq. 12 are compared to the respective
distributions produced by GARFIELD++, in Fig. 17. Apparently, eq. 12 ap-
proximates poorly the GARFIELD++ distributions at low N but successfully
describes the detailed-simulation results for higher values of electron multiplic-
ity. Therefore, the predictions of eq. 13 and 49 suffer from the poor success of
G(L|N) to describe the GARFIELD++ results at low electron multiplicities.

However, for practical reasons, PICOSEC data are collected with non-zero
experimental, amplitude thresholds. The data points shown in Fig 1, in compar-
ison with results based on simulated PICOSEC pulses, were collected [? ] with
thresholds corresponding to e-peak charge greater than 3−4 pC, which translate
(for 425V drift and 450V anode voltages, and 50% Penning Transfer Rate) to
400− 500 electron multiplicity on the mesh. At this region of pre-amplification
electron multiplicities, the model predictions are in an excellent agreement with
the results of GARFIELD++ simulations, as shown in Fig. 9 and 13.

Up to this point, the model has been used to provide information on the
mean value and the variance (i.e. to evaluate the first and second moments) of
transmission time distributions. However, it can be also used for more general
statistical predictions, e.g. the complete probability distribution functions of
the above time variables. As an example, Fig. 18 show the distributions, pro-
duced by GARFIELD++ simulations (black points), of the photoelectron, the
avalanche and the total (on and after the mesh) time, without any restriction
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on the avalanche length or the electron multiplicity on the mesh. The appar-
ent left-right asymmetry and the long tails in these distributions are partially
caused by the dependence of the mean transmission times on the length of the
avalanche (or equivalently, on the length of the photoelectron drift-path, before
the first ionization). Nevertheless, the dependence of the respective variances on
the length of the avalanche also contributes to the asymmetry and the tails. In
order to predict the functional form of the above asymmetric distributions, the
model is complemented with the extra assumption that the related transmission
times, corresponding to a certain avalanche length, follow an Inverse Gaussian
distribution (Wald) function, which is expressed as:

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

[
−λ(x− µ)2

2µ2x

]
(67)

with the parameter µ to be the mean value and the shape parameter λ to be
related with the variance of the distribution as V [x] = µ3/λ. In general, the
convolution of two Wald distributions is not also a Wald distribution. Con-
sequently, even if the photoelectron and avalanche transmission times are de-
scribed by Wald distributions, it is not necessarily true that the total-times are
distributed according to the same functional form. However, GARFIELD++
simulation results indicate, see also Fig. 3, that the distributions of the total-
times, on and after the mesh, are very well approximated by Wald functions.

Hereafter, the model assumes that the statistical properties of the photoelec-
tron time, Tp, and the avalanche time, T, are described by Wald distributions
as follows:

fp
(
Tp;µp(L), λp(L)

)
=

(
λp(L)

2πT 3

)1/2

· exp

[
−λp(L)

(
Tp − µp(L)

)2
2µ2

p(L) · Tp

]

f
(
T ;µ(L), λ(L)

)
=

(
λ(L)

2π · T 3

)1/2

· exp

[
−λ(L) ·

(
T − µ(L)

)2
2µ2(L) · T

] (68)

where

µp(L) =
D − L
Vp

+ doff , according to eq.14

λp(L) =
µ3
p(L)

(D − L) · σ2
p + Φ

. according to eq. 17

Similarly µ(L) =< T (L) > where < T (L) > is given by eq. 9

λ(L) =
µ3(L)

V
[
T (L)

] and V
[
T (L)

]
is given by eq. 38.

Using the probability density R(L; a), i.e the p.d.f. to observe an avalanche
of length L , which is defined by eq. 11, the distributions of Tp and T for any
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Figure 18: Transmission time distributions for all events at 350V and 450V drift and anode
voltage respectively and 50% Penning Transfer Rate: (top-left) Total time on the mesh, (top-
right) total-time after the mesh, (bottom-left) avalanche transmission time and (bottom-right)
photoelectron transmission time. The points are results of GARFIELD++ simulations whilst
the red lines represent the respective model predictions, as it is described in the text.

possible value of L are given by:

Fp(Tp) =
x2∫
x1

fp
(
Tp;µp(L), λp(L)

)
·R(L; a)dL

F (T ) =
x2∫
x1

f
(
T ;µ(L), λ(L)

)
·R(L; a)dL

(69)

The solid lines in the bottom-row plots of Fig. 18 represent graphically the
model predictions expressed by the respective p.d.f.s of eq. 69. The model
predictions are in an excellent agreement with the GARFIELD++ simulation
results.

Similarly, it is assumed that the total-time distributions, on and after the
mesh (Ttot and Tm, respectively) for a certain avalanche length, L, can be well
approximated by Wald functions, as:

ftot
(
Ttot;µtot(L), λtot(L)

)
=

(
λtot(L)

2πT 3
tot

)1/2

· exp

[
−λtot(L)

(
Ttot − µtot(L)

)2
2µ2

tot(L) · Ttot

]

fm
(
Tm;µm(L), λm(L)

)
=

(
λm(L)

2πT 3
m

)1/2

· exp

[
−λm(L)

(
Tm − µm(L)

)2
2µ2

m(L) · Tm

]
(70)

38



where

µtot(L) =
D − L
Vp

+ doff +
〈
T (L)

〉
, according to eq. 9 and 14

λtot(L) =
µ3
tot(L)

V
[
Ttot(L)]

. according to eq. 39

Also µm(L) = µtot(L)+ < ∆t > according to eq. 55, and

λm(L) =
µ3
m(L)

V [Tm(L)]
where V [Tm(L)] is given by eq. 63.

The predictions of eq. 70 are shown in the top-row plots of Fig 18 to be
in an excellent agreement with the GARFIELD++ simulation results. It has
also been verified that the model predicts successfully the transmission time
distributions at all the drift voltage settings considered in this study.

As demonstrated through this work, the developed model is very success-
ful in providing insights for the major microscopic mechanisms, which deter-
mine the timing characteristics of the detector, and in explaining coherently the
unexpected behaviour of microscopic quantities, predicted by GARFIELD++
simulations. Due to the very good agreement of the model predictions with the
detailed GARFIELD++ simulation results, the formulae developed in this work
can be used easily as a tool for fast predictions, provided that the values of the
model input-parameters, i.e. the parameters shown in Table A.8, are known
for the considered operational conditions. This necessity, obviously limits the
application of the developed model as a stand-alone tool. However, having avail-
able sets of input parameter values for certain operational settings, it is possible
to derive an empirical parametrization of the input parameters, which can be
used to provide input to the model for the whole region of operational settings
covered by the above parameterization.
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Appendix A.

Penning T.R. 0% Penning T.R. 50% Penning T.R. 100%
Photoelectron Drift Velocity (µm/ns) 156.8± 0.4 150.5± 0.8 142.2± 1.0

Avalanche Drift Velocity (µm/ns) 181.4± 0.5 184.8± 0.8 188.2± 0.9

Avalanche-Electron Drift Velocity (µm/ns) 169.9± 0.2 170.4± 0.2 170.0± 0.2

Table A.1: The values of: the photoelectron drift velocity Vp, the avalanche drift velocity
Va and the drift velocity Vea, of an avalanche-electron, for three different values of Penning
Transfer Rate and default high voltage settings.

Penning T.R. 0% Penning T.R. 50% Penning T.R. 100%
First Townsend Coeff. (µm−1) 0.0520± 0.0003 0.0695± 0.0005 0.0893± 0.0008

Table A.2: The first Townsend coefficient, estimated for GARFIELD++ simulations, for
different Penning Transfer Rates and for default drift voltage settings.

Penning T.R. 0% Penning T.R. 50% Penning T.R. 100%
Mean time-gain, ρ (ns) 17.4010−3 ± 0.3710−3 17.2510−3 ± 0.4210−3 17.7210−3 ± 0.4810−3

Time Constant, C (ns) 53.5010−3 ± 3.010−3 60.010−3 ± 4.010−3 68.010−3 ± 510−3

Table A.3: The mean value of the time-gain ρ and the constant term C of eq. 6, estimated
for several values of the Penning Transfer Rate and of the default drift voltage.

Electron’ s Multiplicity Arriving on the Mesh
Penning T.R. 0% Penning T.R. 50% Penning T.R. 100%

Constant Term 2 (fixed) 2 (fixed) 2 (fixed)

Multiplication Coeff., aeff (µm−1) 32.4710−3 ± 0.0110−3 39.1210−3 ± 0.0110−3 45.3010−3 ± 0.0210−3

Electron’ s Multiplicity Passing Through the Mesh
Penning T.R. 0% Penning T.R. 50% Penning T.R. 100%

Constant Term 0.53± 0.01 0.50± 0.02 0.57± 0.02

Exponential Slope 32.8010−3 ± 0.310−3 39.4010−3 ± 0.210−3 45.0010−3 ± 0.210−3

Table A.4: The exponential slope aeff (multiplication factor) and the constant term (q0) in

the expression q
(
L; aeff

)
= q0 · eaeffL which, for an avalanche of length L, gives the mean

electron multiplicity (q) arriving on the mesh and passing through the mesh. Note that, for
the avalanche which gets initiated by the photoelectron, the constant term is fixed to q0 = 2,
because this avalanche starts with two electrons. After the passage through the mesh, q0 is
found to be ' 0.5, which means that only ∼ 25% of the electron population remains.
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Penning T.R. 0% Penning T.R. 50% Penning T.R. 100%
On the Mesh 0.510± 0.005 0.464± 0.005 0.422± 0.005

After the Mesh 0.530± 0.01 0.475± 0.005 0.430± 0.005

Table A.5: Ratio of the RMS over the mean value of the distributions of electrons multiplicity
in an avalanche of any length (1/(1 + θ)1/2)

Penning T.R. 0% Penning T.R. 50% Penning T.R. 100%
Time Variance per unit length (ns2/µm) 11.6510−5 ± 0.0510−5 11.7510−5 ± 0.0510−5 11.6710−5 ± 0.0510−5

Constant Term (ns2) 16.5510−5 ± 1.5010−5 16.7810−5 ± 1.6210−5 17.0310−5 ± 0.8010−5

Table A.6: Photoelectron’s Diffusion Properties in the Avalanche

Penning T.R. 0% Penning T.R. 50% Penning T.R. 100%
Time Variance per unit length (ns2/µm) 13.2710−5 ± 0.310−5 13.8010−5 ± 0.310−5 13.3010−5 ± 0.610−5

Constant Term (ns2) −47.2710−5 ± 6.8010−5 −56.2210−5 ± 6.810−5 −67.6410−5 ± 13.410−5

Table A.7: Photoelectron’s Diffusion Properties BEFORE the First Ionization

Appendix B.

Let y(L) be a measurement (random variable) of a physical variable Y, which
depends on another physical variable, L, as Y = f(L). Let also the statistical
properties of y depend on L, such that:〈

y(L)
〉

=
∫

Ωy

y ·H(y, L)dy = f(L)〈
y2(L)

〉
−
〈
y(L)

〉2
=
∫

Ωy

[
y −

〈
y(L)

〉]2 ·H(y, L)dy = u(L)
(B.1)

where Ωy is the set of all possible values of y and H(y,L) is the p.d.f. describing
the measurement process, which explicitly depends on the physical variable L,
resulting to mean values and variances dependent on L as shown in eq. B.1.
Furthermore, the physical variable L is distributed, for physics reasons, accord-
ing to the p.d.f. g(L). Suppose an experiment in which several measurements y
of the physical variable Y are performed but there is not any experimental way
to know the corresponding value of L. In the following the expected variance of
the measurements, y, for any possible L, is expressed in terms of f(L), u(L) and
g(L). A possible outcome of a measurement in the above experiment will follow
the p.d.f. h(y) given as

h(y) =

∫
ΩL

H(y, L) · g(L)dL (B.2)
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Penning Transfer Rate 50%
Anode Voltage 450 V
Drift Voltage 325 V 350 V 375 V 400 V 425 V
a (10−2µm−1) 3.607± 0.018 4.400± 0.020 5.208± 0.027 6.069± 0.027 6.950± 0.032

aeff (10−2µm−1) 2.215± 0.001 2.629± 0.001 3.055± 0.001 3.484± 0.001 3.912± 0.001

θ 2.698± 0.142 2.906± 0.154 3.037± 0.162 3.313± 0.179 3.645± 0.191

V −1
ea (10−3ns/µm) 7.311± 0.003 6.877± 0.003 6.509± 0.002 6.173± 0.002 5.866± 0.004

V −1
p (10−3ns/µm 8.065± 0.026 7.678± 0.026 7.266± 0.028 6.923± 0.028 6.643± 0.031

doff (10−2) −3.831± 0.084 −3.437± 0.082 −2.883± 0.075 −2.678± 0.068 −2.364± 0.079

ρ (10−2) 3.570± 0.054 2.919± 0.027 2.489± 0.030 2.185± 0.028 1.725± 0.045

C (10−2ns 7.555± 0.218 7.511± 0.117 7.668± 0.166 7.778± 0.196 7.001± 0.516

σ2
p (10−4ns2/µm) 2.137± 0.054 1.908± 0.046 1.662± 0.073 1.554± 0.050 1.380± 0.063

Φ(10−4ns2) −9.967± 2.417 −7.936± 1.395 −6.40± 1.650 −7.525± 1.343 −5.622± 1.284

σ2
0 (10−4ns2/µm 2.094± 0.005 1.778± 0.003 1.543± 0.004 1.341± 0.003 1.175± 0.004

tr 0.244± 0.009 0.248± 0.044 0.238± 0.011 0.251± 0.009 0.247± 0.009

δ(10−2ns) 7.217± 0.034 6.871± 0.032 6.607± 0.031 6.305± 0.030 5.938± 0.040

∆tmesh(10−1ns) 1.521± 0.005 1.455± 0.005 1.400± 0.004 1.344± 0.003 1.303± 0.004
Control Parameters

x1 (µm) 0 0 0 0 0

x2 (µm) 164 167 174 174 172

w/ρ 1 1 1 1 1

D (µm) 182 182 182 182 182

Nmax 350 500 1250 1750 3500

Table A.8: Values of the parameters used by the model

with ΩL standing for the set of all possible values of L. The mean value of the
measurements y, for any possible value of L, will be

< y >=

∫
Ωy

∫
ΩL

y ·H(y, L) · g(L)dLdy =

∫
ΩL

f(L) · g(L)dL (B.3)

The second moment of y is expressed in the same way as:

< y2 >=

∫
Ωy

∫
ΩL

y2 ·H(y, L) · g(L)dLdy =

∫
ΩL

[
u(L) + f2(L)

]
· g(L)dL (B.4)
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where the definition of u(L) from eq. B.1 has been used. Combining eq. B.3
with eq. B.4 the variance of y for any possible L is given by:

V [y] =< y2 > − < y >2

=
∫

ΩL

[
u(L) + f2(L)

]
· g(L)dL−

[ ∫
ΩL

f(L) · g(L)dL

]2

=
∫

ΩL

u(L) · g(L)dL+

 ∫ΩL f2(L) · g(L)dL−

[ ∫
ΩL

f(L) · g(L)dL

]2


(B.5)

where the first term expresses the proper averaging of the y variances each
defined at specific L, whilst the second term expresses the fact that y has dif-
ferent mean values at different L and contributes as the variance of f(L) with L
distributed according to g(L).
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