
Version 10.5

User Actions, Hits and Digits

aka ‘Extracting Useful Information’

Witek Pokorski (CERN)

Geant4 Beginners Course

22 January 2019

CERN

These slides include material presented before by J. Madsen and I. Hrivnacova.

What do we need to run simulation?

2

• Given geometry, physics and primary track generation, Geant4 does proper physics simulation "silently".
• You have to add a bit of code to extract information useful to you.

• The user action classes, if provided, are called by Geant4 kernel during all phases of tracking

p+

p+

PrimaryGenerator Geometry PhysicsList

UserActions SensitiveDetectors

Hits
Digits

Statistics,
Histograms,

etc

User Application

User Actions - Overview

• mandatory Users actions classes

– G4VUserActionInitialization

– G4VUserPrimaryGeneratorAction

• optional Geant4 User Action classes

– G4UserRunAction

– G4UserEventAction

– G4UserTrackingAction

– G4UserSteppingAction

– G4UserStackingAction

• fully customizable (empty by default)

• the user action classes are used to setup and/or modify
the simulation or collect information about the run

– allow to take actions specific for the given
simulation

• simulated only relevant particles

• save specific information, fill histograms

• speed-up simulation by applying different
limits

3

R
u
n

Event

Stack

Event

Stack

Event

Stack

Event

Stack

Tracks
Steps

G4UserRunAction (1/2)

• virtual G4Run* GenerateRun()

– This method is invoked at the beginning of BeamOn.

– User hook to provide derived G4Run and create his/her own
concrete class to store some information about the run

– Ideal place to set variables which affect the physics table (such
as production thresholds) for a particular run, because
GenerateRun() is invoked before the calculation of the physics
table.

• virtual void BeginOfRunAction(const G4Run*)

– Invoked before entering the event loop

– Typical use of this method would be to initialize and/or book
histograms for a particular run

– This method is invoked after the calculation of the physics
tables

4

R
u
n

G4UserRunAction (2/2)

• virtual void EndOfRunAction(const G4Run*)

– This method is invoked at the very end of the run
processing

– It is typically used for a simple analysis of the
processed run

• virtual void SetMaster(G4bool val=true)

• G4bool IsMaster()

– Commonly, a MT simulation will have a master-thread
instance and a worker thread instance — provides
ability to discern whether instance is for worker or
master thread

5

R
u
n

G4UserEventAction

• virtual void BeginOfEventAction(const G4Event*)

– This method is invoked before converting the primary
particles to G4Track objects

– A typical use of this method would be to initialize and/or
book histograms for a particular event

• virtual void EndOfEventAction(const G4Event*)

– This method is invoked at the very end of event
processing

– Typically used for a simple analysis of the processed
event

– If the user wants to keep the currently processing event
until the end of the current run, the user can invoke

G4EventManager::GetEventManager()->KeepTheCurrentEvent()

so that it is kept in G4Run object.

• can be used for visualization of particular events

6

R
u
n

Event

Event

G4UserStackingAction (1/2)

• G4UserStackingAction is a user-hook to reorder the priority of
the particle stack

• virtual G4ClassificationOfNewTrack ClassifyNewTrack(const
G4Track*)

– invoked by G4StackManager whenever a new G4Track
object is ”pushed” onto a stack by G4EventManager

– Returns an enumerator whose value indicates to which
stack the track should be sent. Value is determined by the
user from four possible values

– fUrgent — track is placed in urgent stack

– fWaiting — track is placed in the waiting stack (until
urgent is empty)

– fPostpone — track is postponed to next event

– fKill — track is deleted immediately and not stored

7

R
u
n

Event

Stack

Event

Stack

Event

Stack

Event

Stack

G4UserStackingAction (2/2)

• virtual void NewStage()

– Invoked when the urgent stack is empty and the waiting stack contains at least one
G4Track object

– User may kill or re-assign to different stacks all the tracks in the waiting stack
[G4StackManager::ReClassify()]

– If no user action is taken, all tracks in the waiting stack are transferred to the urgent
stack

– The user may decide to abort the current event here

• virtual void PrepareNewEvent()

– Invoked at the beginning of each event

– At this point no primary particles have been converted to tracks, so the urgent and
waiting stacks are empty

– However, there may be tracks in the postponed-to-next-event stack; for each of
these the ClassifyNewTrack() method is called and the track is assigned to the
appropriate stack

8

G4UserTrackingAction

• Provides user hooks to access a particle track at the
beginning and end of the particle’s lifetime

• virtual void BeginOfTrackingAction(const G4Track*)

– Invoked at the beginning of a particle’s lifetime
(creation)

• virtual void EndOfTrackingAction(const G4Track*)

– Invoked at the end of a particles lifetime

– End of particle’s lifetime can occur from

• Zero kinetic energy

• Track is explicitly killed (fStopAndKill,
fKillTrackAndSecondaries)

• Particle leaves the “world”

9

Event

Tracks

G4UserSteppingAction

• Provides user hook to a particle step

• virtual void UserSteppingAction(const G4Step*)

– Invoked after a particle has undergone a “step”

– A step can be defined by

• Undergoing physical process (e.g. ionization, decay)

• Transport step to boundary

• Typically used for custom scoring that is not supported by
primitive scorers

• The most frequently called user hook

• Special attention must be paid to thread-safety when custom
scoring is done here

10

Tracks Steps

Sensitive Detectors, Hits and Digits - Overview

• Sensitive Detector (SD) is assigned to a
logical volume

• SD::ProcessHits are invoked when a step
takes place in the logical volume that they
are assigned to

• SDs can be used to simulate the “read-
out” of your detector:

– a way to declare a geometric element
“sensitive” to the passage of particles

– gives the user a handle to collect
quantities (Hits) from these elements

• energy deposited, position, time
information

• ‘Digitization’ consists of converting ‘Hits’
into the detector response in terms of
electric current & voltage signals (digits),
as it would happen in the real experiment

– same reconstruction chain can be
applied for both real and simulated
data

11

SD::ProcessHits(G4Step*…)

Hits

Non sensitive

Sensitive

DigitsDigitize()

Defining a Sensitive Detector

• Sensitive detector objects are created and assigned to logical volumes in a user
detector construction class in ConstructSDandField() function

• Creating SD object:

12

G4VSensitiveDetector* mySD

= new MySD("MySD", “MyHitsCollection”);

• Each sensitive detector object must have a unique name.
• More than one sensitive detector instances (objects) of the same type (class)

can be defined with different detector name
• Assigning to a logical volume via the volume name

// defined previously

// G4VSensitiveDetector* mySD = ...

SetSensitiveDetector(“MyLVName”, mySD);

Sensitive Detector Class (1/2)

• A sensitive detector is defined in a user class, MySD, derived from
G4VSensitiveDetector base class

– It defines the following user functions which are invoked by Geant4 kernel during
event processing:

– At begin of event: Initialize()

– In a step (if in the associated volume): ProcessHits(..)

– At end of event: EndOfEvent(..)

13

Sensitive Detector Class (2/2)

14

#include "G4VSensitiveDetector.hh"

...

class MySD : public G4VSensitiveDetector {

public:

MySD(const G4String& name,

const G4String& hitsCollectionName);

virtual ~MySD();

virtual void Initialize(G4HCofThisEvent* hce);

virtual G4bool ProcessHits(G4Step* step,

G4TouchableHistory* history);

virtual void EndOfEvent(G4HCofThisEvent* hce);

};

User functions
called by Geant4
kernel

A Hit

• Hit is a snapshot of the physical interaction of a
track or an accumulation of interactions of
tracks in the sensitive region of your detector

• A tracker detector typically generates a hit for
every single step of every single (charged) track.

– A tracker hit typically contains:

• Position and time, Energy deposition of
the step, Track ID

• A calorimeter detector typically generates a hit
for every “cell”, and accumulates energy
deposition in each cell for all steps of all tracks.

– A calorimeter hit typically contains:

• Sum of deposited energy , Cell ID

15

step in tracker
volume

MyHit:
Edep
x,y,z
time

User Hit Class

• You can store various types
information by implementing your
own concrete Hit class.

– In this example we store the
energy deposition of the step

16

class MyHit

{

public:

MyHit();

// set/get methods; eg.

void SetEdep (G4double edep);

G4double GetEdep() const;

private:

// some data members; eg.

G4double fEdep; // energy

deposit

};

MyHit.hh

• Typically for each information
to be stored in a hit we add:

Data member G4type fData; G4double fEdep;

Set function void SetData(G4type data);
void SetEdep(G4double

edep):

Get function G4type GetData() const; G4double GetEdep() const;

Create a Hit

• A hit can be created when a step takes place in a sensitive logical volume, in a user
sensitive detector function ProcessHits(..)

17

G4bool MySD::ProcessHits(G4Step* step, G4TouchableHistory* /*history*/)

{

MyHit* newHit = new MyHit();

// Get some properties from G4Step and set them to the hit

// newHit->SetXYZ();

G4double edep = step->GetTotalEnergyDeposit();

newHit->SetEdep(edep);

// ...

return true;

}

• Currently, returning boolean value is not used.
• The “history” will be given only if a Readout geometry is defined to this sensitive

detector (the readout geometry is not presented in this course)

Hits Collections

• Many hits can be created during one event

– Hit objects must be stored in a dedicated collection

• Geant4 provides a dedicated class, G4THitsCollection, which allows to associate the hits
collections with G4Event object and can be then accessed

– through G4Event at the end of event, to be used for analyzing an event

– through G4SDManager during processing an event, to be used for event filtering.

• When using Geant4 hits collections, the user hit class must derive from G4VHit base
class

• Users may also define their own hits collections, eg.

– Using STL library: std::vector<MyHit>

– Using their application framework, eg. in the context of ROOT, it can be a ROOT
collection (TObjArray, TClonesArray)

18

User Geant4 Hit Class

• Hits collection of a concrete hit class is defined as a specialization of the
G4THitsCollection template class

– Note the analogy of G4THitsCollection<MyHit> with std::vector<MyHit>

– To avoid long names we define a name shortcut using typedef

19

#include "G4VHit.hh"
class MyHit : public G4VHit

{

// the class definition as before

// utility functions (called by Geant4)

virtual void Draw();

virtual void Print();

};

#include "G4THitsCollection.hh"

typedef G4THitsCollection<MyHit> MyHitsCollection;

When using Geant4
hits collections,
the user hit class
must derive from
G4VHit

MyHit.hh

Define Hits Collection (1/2)

• The name(s) of the hits collection(s) which is (are) handled by this sensitive detector is
defined in the constructor

– It is saved in the collectionName data member of the G4VSensitiveDetector base class

• In case your sensitive detector generates more than one kinds of hits (e.g. anode and
cathode hits separately), define all collection names.

20

void MySD::MySD(const G4String& name,

const G4String& hitsCollectionName) :

G4VSensitiveDetector(name), fHitsCollection(0)

{

collectionName.insert(hitsCollectionName);

}

Define Hits Collection (2/2)

21

void MySD::Initialize(G4HCofThisEvent* hce)

{

fHitsCollection = new MyHitsCollection (SensitiveDetectorName,

collectionName[0]);

G4int hcID

= G4SDManager::GetSDMpointer()>GetCollectionID(collectionName[0]);

hce->AddHitsCollection(hcID, hitsCollection);

}

• The hits collection object is created in Initialize()
• This method is invoked at the beginning of each event

• The collectionID, hcID, is available after this sensitive detector object is constructed and
registered to G4SDManager.

• Thus, GetCollectionID() method cannot be invoked in the constructor of this
detector class.

• It can be then attached to G4HCofThisEvent object given in the argument.
• This object is then available via G4Event object

Filling a Hits Collection (1/2)

• The hits are usually inserted in the hits collection when they are created

22

void MySD::SomeFunction(...)

{

// Create a hit

MyHit* newHit = new MyHit();

// Set some properties to the hit

// newHit->SetXYZ();

// Add the hit in the SD hits collection

fHitsCollection->insert(newHit);

}

• Depending on the detector type SomeFunction() can be either Initialize()
or ProcessHits()

MySD.cc

Filling a Hits Collection (2/2)

• The way how the hits collections are filled depends on a detector type

• A tracker detector typically generates a hit for every single step of every single (charged)
track

– Hits are created in MySD::ProcessHits()

– They typically contain

• Position and time, energy deposition of the step, track ID

• A calorimeter detector typically generates a hit for every cell, and accumulates energy
deposition in each cell for all steps of all tracks

– Hits are created in MySD::Initialize()

– They typically contain:

• Sum of deposited energy, Cell ID

23

Digitization

• digits are created using information of hits and/or other digits by a digitizer module

• digitizer module is not associated with any volume

– you have to implicitly invoke the Digitize() method of your
concrete G4VDigitizerModule class

• G4VDigi is an abstract base class which represents a digit

– inherit this base class and derive your own concrete digit class(es)

• G4TDigiCollection is a template class for digits collections, which is derived from the
abstract base class G4VDigiCollection

• G4VDigitizerModule is an abstract base class which represents a digitizer module

– pure virtual method Digitize() must be implemented in the concrete digitizer class

• G4DigiManager is the singleton manager class of the digitizer modules

– concrete digitizer modules should be registered to G4DigiManager with their
unique names

24

G4DigiManager * fDM = G4DigiManager::GetDMpointer();

MyDigitizer * myDM = fDM->FindDigitizerModule("/myDet/myEMdigi");

myDM->Digitize();

Conclusion

• User Actions and Sensitive Detectors are essential for any simulation application

– without User Action and/or Sensitive Detectors, the simulation would run ‘silently’
not producing any output

• User Actions allow to

– control the simulation flow

• at the level of run, event, stack, track, step

– extract information

• Sensitive Detectors (SD) are attached to specific volumes and allow to ‘mimic’ the
readout of the real detector

– they allow to create ‘hits’ which then can be ‘digitized’

• Digitization modules are not associated to any volumes

– Digitize() method needs to be invoked explicitely

25

Exercise

• We will be working with example B4 (examples/basic/B4) which illustrates all the items
discussed in this lecture

– go through the README file

• We will start with Variant ‘a’ where user actions are used

– go trough the SteppingAction and EventAction to understand how the statistics is
collected

– modify the actions to collect separately the statistics for positive, negative as well
as neutral particles

• We now move to variant ‘c’ where Sensitive Detectors are used

– go through the SensitiveDetector implementation to understand how the ‘hits’ are
created

– modify the implementation to collect hits only with the energy above some
threshold (for instance 1keV)

26

