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What do we need to run simulation?
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• Given geometry, physics and primary track generation, Geant4 does proper physics simulation "silently". 
• You have to add a bit of code to extract information useful to you. 

• The user action classes, if provided, are called by Geant4 kernel during all phases of tracking 
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User Actions - Overview

• mandatory Users actions classes

– G4VUserActionInitialization

– G4VUserPrimaryGeneratorAction  

• optional Geant4 User Action classes 

– G4UserRunAction

– G4UserEventAction 

– G4UserTrackingAction 

– G4UserSteppingAction 

– G4UserStackingAction 

• fully customizable (empty by default)

• the user action classes are used to setup and/or modify 
the simulation or collect information about the run 

– allow to take actions specific for the given 
simulation

• simulated only relevant particles

• save specific information, fill histograms

• speed-up simulation by applying different 
limits
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G4UserRunAction (1/2)

• virtual G4Run* GenerateRun()

– This method is invoked at the beginning of BeamOn. 

– User hook to provide derived G4Run and create his/her own 
concrete class to store some information about the run 

– Ideal place to set variables which affect the physics table (such 
as production thresholds) for a particular run, because 
GenerateRun() is invoked before the calculation of the physics 
table. 

• virtual void BeginOfRunAction(const G4Run*) 

– Invoked before entering the event loop 

– Typical use of this method would be to initialize and/or book 
histograms for a particular run 

– This method is invoked after the calculation of the physics 
tables 
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G4UserRunAction (2/2)

• virtual void EndOfRunAction(const G4Run*)

– This method is invoked at the very end of the run 
processing

– It is typically used for a simple analysis of the 
processed run

• virtual void SetMaster(G4bool val=true) 

• G4bool IsMaster() 

– Commonly, a MT simulation will have a master-thread 
instance and a worker thread instance — provides 
ability to discern whether instance is for worker or 
master thread 
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G4UserEventAction

• virtual void BeginOfEventAction(const G4Event*)

– This method is invoked before converting the primary 
particles to G4Track objects 

– A typical use of this method would be to initialize and/or 
book histograms for a particular event 

• virtual void EndOfEventAction(const G4Event*)

– This method is invoked at the very end of event 
processing 

– Typically used for a simple analysis of the processed 
event 

– If the user wants to keep the currently processing event 
until the end of the current run, the user can invoke 

G4EventManager::GetEventManager()->KeepTheCurrentEvent() 

so that it is kept in G4Run object.

• can be used for visualization of particular events 
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G4UserStackingAction (1/2)

• G4UserStackingAction is a user-hook to reorder the priority of 
the particle stack

• virtual G4ClassificationOfNewTrack ClassifyNewTrack(const
G4Track*) 

– invoked by G4StackManager whenever a new G4Track
object is ”pushed” onto a stack by G4EventManager

– Returns an enumerator whose value indicates to which 
stack the track should be sent. Value is determined by the 
user from four possible values 

– fUrgent — track is placed in urgent stack

– fWaiting — track is placed in the waiting stack (until 
urgent is empty)

– fPostpone — track is postponed to next event

– fKill — track is deleted immediately and not stored 
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G4UserStackingAction (2/2) 

• virtual void NewStage()

– Invoked when the urgent stack is empty and the waiting stack contains at least one 
G4Track object

– User may kill or re-assign to different stacks all the tracks in the waiting stack 
[G4StackManager::ReClassify()]

– If no user action is taken, all tracks in the waiting stack are transferred to the urgent 
stack 

– The user may decide to abort the current event here 

• virtual void PrepareNewEvent()

– Invoked at the beginning of each event 

– At this point no primary particles have been converted to tracks, so the urgent and 
waiting stacks are empty 

– However, there may be tracks in the postponed-to-next-event stack; for each of 
these the ClassifyNewTrack() method is called and the track is assigned to the 
appropriate stack 
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G4UserTrackingAction

• Provides user hooks to access a particle track at the 
beginning and end of the particle’s lifetime 

• virtual void BeginOfTrackingAction(const G4Track*) 

– Invoked at the beginning of a particle’s lifetime 
(creation) 

• virtual void EndOfTrackingAction(const G4Track*) 

– Invoked at the end of a particles lifetime

– End of particle’s lifetime can occur from 

• Zero kinetic energy

• Track is explicitly killed (fStopAndKill, 
fKillTrackAndSecondaries) 

• Particle leaves the “world” 
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G4UserSteppingAction

• Provides user hook to a particle step

• virtual void UserSteppingAction(const G4Step*) 

– Invoked after a particle has undergone a “step” 

– A step can be defined by 

• Undergoing physical process (e.g. ionization, decay) 

• Transport step to boundary 

• Typically used for custom scoring that is not supported by 
primitive scorers 

• The most frequently called user hook 

• Special attention must be paid to thread-safety when custom 
scoring is done here 
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Sensitive Detectors, Hits and Digits - Overview 

• Sensitive Detector (SD) is assigned to a 
logical volume 

• SD::ProcessHits are invoked when a step 
takes place in the logical volume that they 
are assigned to 

• SDs can be used to simulate the “read-
out” of your detector:

– a way to declare a geometric element 
“sensitive” to the passage of particles

– gives the user a handle to collect 
quantities (Hits) from these elements

• energy deposited, position, time 
information

• ‘Digitization’ consists of converting ‘Hits’ 
into the detector response in terms of 
electric current & voltage signals (digits), 
as it would happen in the real experiment

– same reconstruction chain can be 
applied for both real and simulated 
data
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Defining a Sensitive Detector 

• Sensitive detector objects are created and assigned to logical volumes in a user 
detector construction class in ConstructSDandField() function

• Creating SD object: 

12

G4VSensitiveDetector* mySD

= new MySD("MySD", “MyHitsCollection”); 

• Each sensitive detector object must have a unique name. 
• More than one sensitive detector instances (objects) of the same type (class) 

can be defined with different detector name 
• Assigning to a logical volume via the volume name 

// defined previously

// G4VSensitiveDetector* mySD = ... 

SetSensitiveDetector(“MyLVName”, mySD); 



Sensitive Detector Class (1/2) 

• A sensitive detector is defined in a user class, MySD, derived from 
G4VSensitiveDetector base class 

– It defines the following user functions which are invoked by Geant4 kernel during 
event processing: 

– At begin of event: Initialize()

– In a step (if in the associated volume): ProcessHits(..) 

– At end of event: EndOfEvent(..) 
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Sensitive Detector Class (2/2)
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#include "G4VSensitiveDetector.hh"

...

class MySD : public G4VSensitiveDetector { 

public: 

MySD(const G4String& name,

const G4String& hitsCollectionName); 

virtual ~MySD();

virtual void Initialize(G4HCofThisEvent* hce); 

virtual G4bool ProcessHits(G4Step* step, 

G4TouchableHistory* history); 

virtual void   EndOfEvent(G4HCofThisEvent* hce); 

}; 

User functions 
called by Geant4 
kernel



A Hit

• Hit is a snapshot of the physical interaction of a 
track or an accumulation of interactions of 
tracks in the sensitive region of your detector 

• A tracker detector typically generates a hit for 
every single step of every single (charged) track.

– A tracker hit typically contains: 

• Position and time, Energy deposition of 
the step, Track ID

• A calorimeter detector typically generates a hit 
for every “cell”, and accumulates energy 
deposition in each cell for all steps of all tracks.

– A calorimeter hit typically contains: 

• Sum of deposited energy , Cell ID
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User Hit Class 

• You can store various types 
information by implementing your 
own concrete Hit class. 

– In this example we store the 
energy deposition of the step 
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class MyHit

{ 

public: 

MyHit();

// set/get methods; eg.

void SetEdep (G4double edep); 

G4double GetEdep() const; 

private: 

// some data members; eg.

G4double fEdep; // energy 

deposit 

}; 

MyHit.hh

• Typically for each information 
to be stored in a hit we add: 

Data member G4type fData; G4double fEdep; 

Set function void SetData(G4type data); 
void SetEdep(G4double 

edep): 

Get function G4type GetData() const; G4double GetEdep() const; 



Create a Hit 

• A hit can be created when a step takes place in a sensitive logical volume, in a user 
sensitive detector function ProcessHits(..) 
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G4bool MySD::ProcessHits(G4Step* step, G4TouchableHistory* /*history*/) 

{

MyHit* newHit = new MyHit();

// Get some properties from G4Step and set them to the hit 

// newHit->SetXYZ();

G4double edep = step->GetTotalEnergyDeposit(); 

newHit->SetEdep(edep);

// ...

return true; 

} 

• Currently, returning boolean value is not used. 
• The “history” will be given only if a Readout geometry is defined to this sensitive 

detector (the readout geometry is not presented in this course) 



Hits Collections 

• Many hits can be created during one event

– Hit objects must be stored in a dedicated collection 

• Geant4 provides a dedicated class, G4THitsCollection, which allows to associate the hits 
collections with G4Event object and can be then accessed 

– through G4Event at the end of event, to be used for analyzing an event 

– through G4SDManager during processing an event, to be used for event filtering. 

• When using Geant4 hits collections, the user hit class must derive from G4VHit base 
class 

• Users may also define their own hits collections, eg.

– Using STL library: std::vector<MyHit> 

– Using their application framework, eg. in the context of ROOT, it can be a ROOT 
collection (TObjArray, TClonesArray) 
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User Geant4 Hit Class 

• Hits collection of a concrete hit class is defined as a specialization of the 
G4THitsCollection template class 

– Note the analogy of G4THitsCollection<MyHit> with std::vector<MyHit> 

– To avoid long names we define a name shortcut using typedef 

19

#include "G4VHit.hh" 
class MyHit : public G4VHit

{ 

// the class definition as before 

// utility functions (called by Geant4) 

virtual void Draw(); 

virtual void Print(); 

};

#include "G4THitsCollection.hh" 

typedef G4THitsCollection<MyHit> MyHitsCollection; 

When using Geant4
hits collections,
the user hit class
must derive from 
G4VHit 

MyHit.hh



Define Hits Collection (1/2) 

• The name(s) of the hits collection(s) which is (are) handled by this sensitive detector is 
defined in the constructor 

– It is saved in the collectionName data member of the G4VSensitiveDetector base class 

• In case your sensitive detector generates more than one kinds of hits (e.g. anode and 
cathode hits separately), define all collection names. 
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void MySD::MySD(const G4String& name, 

const G4String& hitsCollectionName) : 

G4VSensitiveDetector(name), fHitsCollection(0) 

{

collectionName.insert(hitsCollectionName); 

} 



Define Hits Collection (2/2) 
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void MySD::Initialize(G4HCofThisEvent* hce) 

{ 

fHitsCollection = new MyHitsCollection (SensitiveDetectorName,   

collectionName[0]); 

G4int hcID

= G4SDManager::GetSDMpointer()>GetCollectionID(collectionName[0]); 

hce->AddHitsCollection(hcID, hitsCollection); 

}  

• The hits collection object is created in Initialize()
• This method is invoked at the beginning of each event

• The collectionID, hcID, is available after this sensitive detector object is constructed and 
registered to G4SDManager. 

• Thus, GetCollectionID() method cannot be invoked in the constructor of this 
detector class. 

• It can be then attached to G4HCofThisEvent object given in the argument. 
• This object is then available via G4Event object



Filling a Hits Collection (1/2)

• The hits are usually inserted in the hits collection when they are created 
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void MySD::SomeFunction(...) 

{ 

// Create a hit 

MyHit* newHit = new MyHit();

// Set some properties to the hit

// newHit->SetXYZ();

// Add the hit in the SD hits collection

fHitsCollection->insert(newHit); 

} 

• Depending on the detector type SomeFunction() can be either Initialize()
or ProcessHits() 

MySD.cc



Filling a Hits Collection (2/2)

• The way how the hits collections are filled depends on a detector type 

• A tracker detector typically generates a hit for every single step of every single (charged) 
track 

– Hits are created in MySD::ProcessHits() 

– They typically contain 

• Position and time, energy deposition of the step, track ID 

• A calorimeter detector typically generates a hit for every cell, and accumulates energy 
deposition in each cell for all steps of all tracks 

– Hits are created in MySD::Initialize() 

– They typically contain: 

• Sum of deposited energy, Cell ID 
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Digitization

• digits are created using information of hits and/or other digits by a digitizer module

• digitizer module is not associated with any volume

– you have to implicitly invoke the Digitize() method of your 
concrete G4VDigitizerModule class

• G4VDigi is an abstract base class which represents a digit

– inherit this base class and derive your own concrete digit class(es)

• G4TDigiCollection is a template class for digits collections, which is derived from the 
abstract base class G4VDigiCollection

• G4VDigitizerModule is an abstract base class which represents a digitizer module

– pure virtual method Digitize() must be implemented in the concrete digitizer class

• G4DigiManager is the singleton manager class of the digitizer modules

– concrete digitizer modules should be registered to G4DigiManager with their 
unique names
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G4DigiManager * fDM = G4DigiManager::GetDMpointer(); 

MyDigitizer * myDM = fDM->FindDigitizerModule( "/myDet/myEMdigi"); 

myDM->Digitize();



Conclusion

• User Actions and Sensitive Detectors are essential for any simulation application

– without User Action and/or Sensitive Detectors, the simulation would run ‘silently’ 
not producing any output

• User Actions allow to 

– control the simulation flow

• at the level of run, event, stack, track, step

– extract information

• Sensitive Detectors (SD) are attached to specific volumes and allow to ‘mimic’ the 
readout of the real detector

– they allow to create ‘hits’ which then can be ‘digitized’

• Digitization modules are not associated to any volumes

– Digitize() method needs to be invoked explicitely
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Exercise

• We will be working with example B4 (examples/basic/B4) which illustrates all the items 
discussed in this lecture

– go through the README file

• We will start with Variant ‘a’ where user actions are used

– go trough the SteppingAction and EventAction to understand how the statistics is 
collected

– modify the actions to collect separately the statistics for positive, negative as well 
as neutral particles

• We now move to variant ‘c’ where Sensitive Detectors are used 

– go through the SensitiveDetector implementation to understand how the ‘hits’ are 
created

– modify the implementation to collect hits only with the energy above some 
threshold (for instance 1keV)
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