
User Interface: UI commands

Mihaly Novak (CERN, EP-SFT) 
Getting Started with Geant4 at CERN, Geneva (Switzerland),  21-23 January 2019 



User Interface: UI commands

• What are user interfaces for?  
• UI command syntax 
• UI command submission 
• Macro file 
• Batch mode v.s. interactive mode 
• Further information  
• Extension: Write your own UI command! 

2



WHAT ARE USER INTERFACES FOR?
User Interface: UI commands

3



What are user interfaces for?

• Geant4 is a toolkit: 
- provides all the necessary components needed to describe and to solve 

particle transport simulation problems 
- problem definitions/description: geometry, particles, physics, etc. 
- problem solution: step-by-step particle transport computation  
- while providing interaction points for the user   

• Application programmer:  
- develops the simulation application by making use of the components 

provided by the toolkit 
- requires solid knowledge of both the C++ programming language and the 

simulation toolkit  
• End-user: 

- runs the simulation application with the possibility of controlling its flow 
- doesn’t need to have C++ programming experience   

• User interfaces makes this possible: control the program flow of a Geant4 
simulation application without using C++ language   

4



UI COMMAND SYNTAX
User Interface: UI commands

5



UI command syntax

• A UI command (e.g. /run/verbose 1 ) consists of:   
- command directory 
- command 
- parameter(s) 

• A parameter can be a type of string, boolean, integer or double:  
- space is a delimiter 
- use double-quotes (“”) for strings 

• A parameter can be omitted. Its default value will be taken in this 
case: 
- predefined default value or current value according to its definition 
- using the default value for the first parameter while setting the 

second: /directory/command ! second 

- i.e. the exclamation mark “!” can be used as a place holder

6



UI COMMAND SUBMISSION
User Interface: UI commands

7



UI command submission  

• Geant4 UI commands can be issued in 3 different ways by: 
- (G)UI interactive command submission (see more later) 
- batch mode using a macro file (see more later) 
- hard-coded commands in the application (slow): 

      G4UImanager* UI = G4UImanager::GetUIpointer(); 
     UI->ApplyCommand("/run/verbose 1");    

• The availability of the individual commands, the ranges of parameters, 
the available candidates on individual command parameter may vary 
according to the implementation of your application  
- some commands are available only for limited Geant4 application 

state(s): e.g. /run/beamOn 100 is available only for Idle states

8



UI command submission  

• Command will be refused in case of (see example later): 
– Wrong application state 
– Wrong type of parameter 
– Insufficient number of parameters 
– Parameter out of its range: 

• for integer or double type parameter 
– Parameter out of its candidate list 

• for string type parameter 
– Command not found

9



MACRO FILE
User Interface: UI commands

10



Macro file

• A macro file is an ASCII file that contains UI commands 
• All commands must be given with their full-path directories 
• Use “#” for comment a line 

– from the first “#” to the end of the line will be ignored 

– comment lines will be echoed if /control/verbose is set to 2 

• Macro file can be executed  

– interactively or in other macro files 

/control/execute macro_file_name 

– hard-coded 
G4UImanager* UI = G4UImanager::GetUIpointer(); 
UI->ApplyCommand("/control/execute macro_file_name");

11



BATCH MODE V.S. INTERACTIVE MODE
User Interface: UI commands

12



Batch mode v.s. interactive mode

See the main method of the B1 example:/examples/basic/B1/exampleB1.cc  
The 3 different ways of command submission: hard-coded, batch and interactive.  

13

detect interactive mode

batch mode:  
process macro}

} interactive mode:  
start an UI session

}



Batch mode v.s. interactive mode

• Hard-coded command execution: 
- can be easily identified in the previous slide  
- the C++ code needs to be rebuild after all changes     

• Batch mode using a Macro file:  
- in case of batch mode, the commands in the macro file will be 

executed by processing the macro file using the (hard-coded)   
/control/execute macrofile  command  

• Interactive mode: 
- commands are submitted and processed one-by-one trough a 

a Geant4 User Interface Session 
- there are several different types of interfaces available:  

Qt-GUI, GAG-GUI(java based), Xm-GUI (Motif based) or simple C-shell 
like character terminals (tcsh, csh)   
we will use the tcsh terminal and the Qt-GUI  

14



Batch mode v.s. interactive mode

• More on the interactive session interface types: 
- all the different session interface types derived from the abstract 

G4UIsession base class    
- an instance of a G4UIsession (one of the available user 

interfaces listed in the previous slide) is created and its 
SessionStart() method is invoked in the main 

- this will set up the selected UI session 
- the G4UIExecutive can be used to select the most appropriate 

UI type available in the current environment: 
- GUI-s will have higher priory over terminals  
- this can be changed by explicitly selecting the required 

session type (by its name e.g. “tcsh”) at the construction of 
the G4UIExecutive object:    

G4UIExecutive* ui = 0; 
  if ( argc == 1 ) { 
    ui = new G4UIExecutive(argc, argv, “tcsh”); 
  }

15



FURTHER INFORMATION
User Interface: UI commands

16



Further information

• Detailed documentation is available in the Geant4 Book For Application 
Developers: Control section  

• A list of available built-in commands can be found at the Built-in 
Commands subsection 

• How to define custom commands can be found at the User Interface - 
Defining New Commands subsection  

• One can use the application to get a list of available commands including 
the custom ones by:  

– plain text format to standard output  
/control/manual [directory] 

– HTML file(s) - one file per one (sub-)directory 
/control/createHTML [directory]

17

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/control.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/commands.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/userInterfaceCommand.html


Useful Geant4 interactive session terminal commands

18

• Interactive terminal supports some Unix-like commands for directory. 

– cd, pwd - change and display current command directory 

• by setting the current command directory, you may omit (part of) directory 
string 

– ls - list available UI commands and sub-directories 

• It also supports some other commands. 
– history - show previous commands 

– !historyID - re-issue previous command 

– arrow keys and tab (TC-shell only) 
– ?UIcommand - show current parameter values of the command 

– help [UIcommand] - help 

– exit - job termination 

• Above commands are interpreted in the interactive terminal and are not passed to 
Geant4 kernel. You cannot use them in a macro file!



WRITE YOUR OWN UI COMMAND! 
(EXTENSION-I.)

User Interface: UI commands

19



Write your own UI command! 

20

• Possibility of creating your own UI command to manipulate some of the properties of your own 
object (e.g. write a command to be able to setTargetMaterial [g4 NIST material name] 
used in YourDetectorConstruction)  

• You need to write your Messenger class (with defining/adding your UIcommand-s) to your object 
and add to your target object  (e.g. YourDetectorConstruction) which is responsible for 
instantiating and deleting the messenger object   

• Messenger (covered only what we need, see more at the User Interface documentation): 

– handles UIcommand-s targeting a given object (e.g. YourDetectorConstruction) and 
derived from the G4UImesenger base class (e.g. class YourDetectorMessenger : 
public G4UImessenger { … ) 

– UIcommand-s (UIdirectory(-is)) are created in its CTR and deleted in its DTR   

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/userInterfaceCommand.html?highlight=uimessenger


Write your own UI command! 

21

• Possibility of creating your own UI command to manipulate some of the properties of your own 
object (e.g. write a command to be able to setTargetMaterial [g4 NIST material name] 
used in YourDetectorConstruction)  

• You need to write your Messenger class (with defining/adding your UIcommand-s) to your object 
and add to your target object  (e.g. YourDetectorConstruction) which is responsible for 
instantiating and deleting the messenger object   

• Messenger (covered only what we need, see more at the User Interface documentation): 

– handles UIcommand-s targeting a given object (e.g. YourDetectorConstruction) and 
derived from the G4UImesenger base class (e.g. class YourDetectorMessenger : 
public G4UImessenger { … ) 

– UIcommand-s (UIdirectory(-is)) are created in its CTR and deleted in its DTR   

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/userInterfaceCommand.html?highlight=uimessenger


Write your own UI command! 

22

• Possibility of creating your own UI command to manipulate some of the properties of your own 
object (e.g. write a command to be able to setTargetMaterial [g4 NIST material name] 
used in YourDetectorConstruction)  

• You need to write your Messenger class (with defining/adding your UIcommand-s) to your object 
and add to your target object  (e.g. YourDetectorConstruction) which is responsible for 
instantiating and deleting the messenger object   

• Messenger (covered only what we need, see more at the User Interface documentation): 

– handles UIcommand-s targeting a given object (e.g. YourDetectorConstruction) and 
derived from the G4UImesenger base class (e.g. class YourDetectorMessenger : 
public G4UImessenger { … ) 

– UIcommand-s (UIdirectory(-is)) are created in its CTR and deleted in its DTR 

– its virtual void SetNewValue(G4UIcommand* cmd, G4String newValue) is invoked 
when a command is invoked: 

✴ find out which one of your commands has triggered this call by comparing your command 
pointers (stored as members of your Messenger class) to the cmd parameter  

✴ convert the newValue command parameter string to the appropriate value  
✴ apply the corresponding changes to your target class        

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/userInterfaceCommand.html?highlight=uimessenger


Write your own UI command! 

23

• Possibility of creating your own UI command to manipulate some of the properties of your own 
object (e.g. write a command to be able to setTargetMaterial [g4 NIST material name] 
used in YourDetectorConstruction)  

• You need to write your Messenger class (with defining/adding your UIcommand-s) to your object 
and add to your target object  (e.g. YourDetectorConstruction) which is responsible for 
instantiating and deleting the messenger object   

• Messenger:  

– handles UIcommand-s targeting a given object (e.g. YourDetectorConstruction) and 
derived from the G4UImesenger base class (e.g. class YourDetectorMessenger : 
public G4UImessenger { … ) 

– UIcommand-s (UIdirectory(-is)) are created in its CTR and deleted in its DTR 

– its virtual void SetNewValue(G4UIcommand* cmd, G4String newValue) is invoked 
when a command is invoked: 

✴ find out which one of your commands has triggered this call by comparing your command 
pointers (stored as members of your Messenger class) to the cmd parameter  

✴ convert the newValue command parameter string to the appropriate value  
✴ apply the corresponding changes to your target class        



Write your own UI command! 

24

• Possibility of creating your own UI command to manipulate some of the properties of your own 
object (e.g. write a command to be able to setTargetMaterial [g4 NIST material name] 
used in YourDetectorConstruction)  

• You need to write your Messenger class (with defining/adding your UIcommand-s) to your object 
and add to your target object  (e.g. YourDetectorConstruction) which is responsible for 
instantiating and deleting the messenger object   

• Messenger (covered only what we need, see more at the User Interface documentation):  

– handles UIcommand-s targeting a given object (e.g. YourDetectorConstruction) and 
derived from the G4UImesenger base class (e.g. class YourDetectorMessenger : 
public G4UImessenger { … ) 

– UIcommand-s (UIdirectory(-is)) are created in its CTR and deleted in its DTR 

– its virtual void SetNewValue(G4UIcommand* cmd, G4String newValue) is invoked 
when a command is invoked: 

✴ find out which one of your commands has triggered this call by comparing your 
command pointers (stored as members of your Messenger class) to the cmd parameter  

✴ convert the newValue command parameter string to the appropriate value type  
✴ apply the corresponding changes to your target object         

• Note: the Messenger object needs to be created in the Target object but the Target object needs to be 
available in the Messenger object!!! (we will get back to this but first see the UIcommand-s)  

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/userInterfaceCommand.html?highlight=uimessenger


Write your own UI command! 

25

• Possibility of creating your own UI command to manipulate some of the properties of your own object 
(e.g. write a command to be able to setTargetMaterial [g4 NIST material name] used in 
YourDetectorConstruction)  

• You need to write your Messenger class (with defining/adding your UIcommand-s) to your object 
and add to your target object  (e.g. YourDetectorConstruction) which is responsible for 
instantiating and deleting the messenger object   

• Commands (covered only what we need, see more at the User Interface documentation): 

– the individual commands, created in the CTR of the Messenger class 

– they are composed form UIcommand and UIparameter 
– G4UIcommand can be used directly with G4UIparameter for creating UI commands for any 

parameter type 
– derivatives, according to the type of the associated parameter, are also available :  

– G4UIcmdWithAString, G4UIcmdWithADouble, G4UIcmdWithADoubleAndUnit, etc. 

– methods to set the properties of the underlying parameter are available (see next slide) 
– for these UI commands, with numeric and boolean parameters, the corresponding conversion 

methods  (from string to type and from type to string) are implemented (e.g. G4double 
G4UIcmdWithADoubleAndUnit::GetNewDoubleValue(const String newValue))

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/userInterfaceCommand.html?highlight=uimessenger


Write your own UI command! 

26

Some methods available for commands: 
• void SetGuidance(const char * aGuidance):  

– a description string regarding how to use the command  
• void AvailableForStates(G4ApplicationState s1,…):  

– sets the state(s), when the given command can be invoked: G4State_PreInit (initial 
condition); G4State_Init (during initialization); G4State_idle (ready to start a run) 

Some methods, available for derivative commands to set parameter properties: 
• void SetParameterName(const char *name, G4bool omittable, G4bool 

currentAsDefault=false): 

- the user needs to provide a value if omittable=false; the current value of the 
parameter is used as default otherwise if currentAsDefault is also true 

• void SetDefaultUnit(const char* defUnit)OR SetUnitCategory(const char* 
unitCategory): 

– sets the unit of the parameter; either fixed (e.g. “cm”) or categorical (e.g. “Length”); only for 
commands with numeric parameters  

• void SetRange(const char* rangeString): 

– range string parameter must be given in C++ syntax (e.g. aCmd->SetRange("x>0. && 
y>z && z<(x+y)");) only for commands with numeric parameters 



Write your own UI command! 

27

Some methods available for commands: 
• void SetGuidance(const char * aGuidance):  

– a description string regarding how to use the command  
• void AvailableForStates(G4ApplicationState s1,…):  

– sets the state(s), when the given command can be invoked: G4State_PreInit (initial 
condition); G4State_Init (during initialization); G4State_idle (ready to start a run) 

Some methods, available for derivative commands to set parameter properties: 
• void SetParameterName(const char *name, G4bool omittable, G4bool 

currentAsDefault=false): 

- the user needs to provide a value if omittable=false; the current value of the 
parameter is used as default otherwise if currentAsDefault is also true 

• void SetDefaultUnit(const char* defUnit)OR SetUnitCategory(const char* 
unitCategory): 

– sets the unit of the parameter; either fixed (e.g. “cm”) or categorical (e.g. “Length”); only for 
commands with numeric parameters  

• void SetRange(const char* rangeString): 

– range string parameter must be given in C++ syntax (e.g. aCmd->SetRange("x>0. && 
y>z && z<(x+y)");) only for commands with numeric parameters 

Time to write our own UI 
command to set the target 
material, target  thickness! 


