Introduction to the HEL magnet system discussion

Stefano Redaelli, BE-ABP, on behalf of WP5

122nd Collimation Upgrade Specification Meeting, ColUSM
22 November, 2019
CERN, Geneva, CH
Introduction

— CERN and BINP signed the agreements for a construction of hollow electron lenses for the HL-LHC!
— Endorsement for insertion in the upgrade baseline at the recent cost&schedule review!

Ahead of as: detailed finalisation of the design to prepare the construction at BINP!
Moving from a “best effort” study to a real construction project.

— Recent results on e-beam dynamics by the BINP team revealed various potential concerns for the present design.
Introduction

— CERN and BINP signed the agreements for a construction of hollow electron lenses for the HL-LHC!
— Endorsement for insertion in the upgrade baseline at the recent cost&schedule review!

Ahead of as: detailed finalisation of the design to prepare the construction at BINP!
Moving from a “best effort” study to a real construction project.

— Recent results on e-beam dynamics by the BINP team revealed various potential concerns for the present design.

Important to review the open points and converge as soon as possible to a final design of the HEL magnetic system.
The HEL-based collimation concept

Active halo depletion: control diffusion speed, selective by transverse amplitude.

- it is integrated into the hierarchy of the collimation system that remains responsible for the halo disposal.
- it allows distributing losses over a desired time interval.
- it controls tail populations close to collimator jaws (deplete tails).
The HEL-based collimation concept

Active halo depletion: control diffusion speed, selective by transverse amplitude.
- it is integrated into the hierarchy of the collimation system that remains responsible for the halo disposal.
- it allows distributing losses over a desired time interval.
- it controls tail populations close to collimator jaws (deplete tails).

Tight tolerance in position / alignment / local optics to respect collimation constraints.
Requirements

— Depletion of tails by $\sim 90\%$ in time scale of $\sim 1\text{-}2$ minutes
 Even with linear machine and beams non colliding
— Selection of batches within LHC bunch time structure
 Leave “witness” halo for machine protection purpose
— Negligible core blow-up while depleting tails.
— Active on beams starting at the end of the ramp (> 5 TeV)
 Option for operation at injection as commissioning scenario

Main parameters in a nutshell:
— Rise time of electron beam ~ 200ns
— Various pulsing/modulated modes, turn-by-turn modulation of current
— 5A electron beam current, 3m overlap to proton beam
Requirements

— Depletion of tails by ~90% in time scale of ~1-2 minutes
 Even with linear machine and beams non colliding
— Selection of batches within LHC bunch time structure
 Leave “witness” halo for machine protection purpose
— Negligible core blow-up while depleting tails.
— Active on beams starting at the end of the ramp (> 5 TeV)
 Option for operation at injection as commissioning scenario

Main parameters in a nutshell:
— Rise time of electron beam ~ 200ns
— Various pulsing/modulated modes, turn-by-turn modulation of current
— 5A electron beam current, 3m overlap to proton beam
Requirements

— Depletion of tails by ~90% in time scale of ~1-2 minutes
 Even with linear machine and beams non colliding
— Selection of batches within LHC bunch time structure
 Leave “witness” halo for machine protection purpose
— Negligible core blow-up while depleting tails.
— Active on beams starting at the end of the ramp (> 5 TeV)
 Option for operation at injection as commissioning scenario

Main parameters in a nutshell:
— Rise time of electron beam ~ 200ns
— Various pulsing/modulated modes, turn-by-turn modulation of current
— 5A electron beam current, 3m overlap to proton beam
Requirements

- Depletion of tails by ~90% in time scale of ~ 1-2 minutes

 Even with linear machine and beams non colliding

- Selection of batches within LHC bunch time structure

 Leave “witness” halo for machine protection purpose

- Negligible core blow-up while depleting tails.
- Active on beams starting at the end of the ramp (> 5 TeV)

 Option for operation at injection as commissioning scenario

Main parameters in a nutshell:

- Rise time of electron beam ~ 200ns
- Various pulsing/modulated modes, turn-by-turn modulation of current
- 5A electron beam current, 3m overlap to proton beam

Important to have feedback on what are the critical parameters affecting the design, for which more specific tolerances need to be specified.
Present parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value or range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton beam optics at HEL, β [m]</td>
<td>280</td>
</tr>
<tr>
<td>Length of interaction, L [m]</td>
<td>3</td>
</tr>
<tr>
<td>Desired transverse scraping ($> 3.5 \sigma$), r [mm]</td>
<td>$1.1 - 2.2 @ 7\text{TeV}$</td>
</tr>
<tr>
<td>Maximum electron beam current, I [A]</td>
<td>5</td>
</tr>
<tr>
<td>Cathode diameter, inner/outer [mm]</td>
<td>8 / 16</td>
</tr>
<tr>
<td>Gun extraction and modulation voltage [kV]</td>
<td>10</td>
</tr>
<tr>
<td>Cathode-ground voltage [kV]</td>
<td>15</td>
</tr>
<tr>
<td>Collector bias (decelerating) voltage [kV]</td>
<td>in study</td>
</tr>
<tr>
<td>Modulator rise time [ns]</td>
<td>200</td>
</tr>
<tr>
<td>Modulator repetition rate [kHz]</td>
<td>35</td>
</tr>
<tr>
<td>Magnetic field at gun [T]</td>
<td>$0.35 @ 7\text{TeV}$ to $4 @ 450\text{GeV}$</td>
</tr>
<tr>
<td>Magnetic field at bend [T]</td>
<td>3.5</td>
</tr>
<tr>
<td>Magnetic field at main [T]</td>
<td>$3 @ 450\text{GeV}$ to $5 @ 7\text{TeV}$</td>
</tr>
</tbody>
</table>

In operation, require no change of magnetic fields seen by the proton beams (change beam size through gun solenoids).
Present parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value or range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton beam optics at HEL, β [m]</td>
<td>280</td>
</tr>
<tr>
<td>Length of interaction, L [m]</td>
<td>3</td>
</tr>
<tr>
<td>Desired transverse scraping (> 3.5 σ), r [mm]</td>
<td>1.1 – 2.2 @ 7 TeV</td>
</tr>
<tr>
<td>Maximum electron beam current, I [A]</td>
<td>5</td>
</tr>
<tr>
<td>Cathode diameter, inner/outer [mm]</td>
<td>8 / 16</td>
</tr>
<tr>
<td>Gun extraction and modulation voltage [kV]</td>
<td>10</td>
</tr>
<tr>
<td>Cathode-ground voltage [kV]</td>
<td>15</td>
</tr>
<tr>
<td>Collector bias (decelerating) voltage [kV]</td>
<td>in study</td>
</tr>
<tr>
<td>Modulator rise time [ns]</td>
<td>200</td>
</tr>
<tr>
<td>Modulator repetition rate [kHz]</td>
<td>35</td>
</tr>
</tbody>
</table>

- x5 times e-beam current compared to e-lenses in other colliders (RHIC, Tevatron)
- Small electron beams
- **Pulsed operation mode**, with turn-by-turn variation of e-beam current.

In operation, require no change of magnetic fields seen by the proton beams (change beam size through gun solenoids).
The HL-LHC HEL design

This is a small accelerator!
- Cryogenics and magnetic system;
- Electron gun and collector;
- Electron and proton beam diagnostics;
- Vacuum system;
- Support and alignment systems.
This is a small accelerator!
- Cryogenics and magnetic system;
- Electron gun and collector;
- Electron and proton beam diagnostics;
- Vacuum system;
- Support and alignment systems.

— “S” shape to compensate effects on core from e-beam asymmetries.
— Small SC dipole to compensate effect on proton orbit from bending.
Main concerns for p beam dynamics

DC operation:
— Steering of e-beam with respect to p-beam: +/- 4 mm
 for (1) setup around closed-orbit; (2) alignment purposes.
 Recap.: tolerance on proton beam orbit = +/- 2 mm
— Stability of e-beam current

Pulsed operation:
— Minimization of residual fields seen by the core:
 (1) In/out as symmetric as possible in “s” shape;
 (2) Stability of e-beam at 5 A
Main concerns for p beam dynamics

DC operation:
— Steering of e-beam with respect to p-beam: +/- 4 mm
 for (1) setup around closed-orbit; (2) alignment purposes.
 Recap.: tolerance on proton beam orbit = +/- 2 mm
— Stability of e-beam current

Pulsed operation:
— Minimization of residual fields seen by the core:
 (1) In/out as symmetric as possible in “s” shape;
 (2) Stability of e-beam at 5 A

Recent concern from the shift of the e-beam at the location of the BGC to be studied, also for DC mode.
Requirement of e-beam steering
Requirement of e-beam steering
Requirement of e-beam steering
Requirement of e-beam steering

Minimum requirement for “7TeV” setting up: $\Delta e = \pm 2\text{mm}$

Ideal proton orbit:

$r_p = 0 \rightarrow \Delta e = \pm 2\text{ mm}$ would suffice.

Reference LHC case:

$r_p = \pm 2\text{mm} \rightarrow \Delta e = \pm 4\text{ mm}$

With the present corrector scheme, what is the maximum tilt along the 3 m?
Minimum requirement for “7TeV” setting up: $\Delta e = \pm 2$ mm

Ideal proton orbit:

$r_p = 0 \rightarrow \Delta e = \pm 2$ mm would suffice.

Reference LHC case:

$r_p = \pm 2$ mm $\rightarrow \Delta e = \pm 4$ mm

With the present corrector scheme, what is the maximum tilt along the 3 m?
Requirement of e-beam steering

Minimum requirement for “7TeV” setting up: $\Delta e = \pm 2\text{mm}$

Ideal proton orbit:

$$r_p = 0 \rightarrow \Delta e = \pm 2\text{ mm would suffice.}$$

Reference LHC case:

$$r_p = \pm 2\text{mm} \rightarrow \Delta e = \pm 4\text{ mm}$$

With the present corrector scheme, what is the maximum tilt along the 3 m?

$r_p \rightarrow$ absolute orbit position, stable throughout a run (even across years?)
Dynamic changes (fill to fill or dynamics): ~ 150 μm [to be checked with OP]