HiLumi Inner Triplets protection: reliability and availability

A. Apollonio, T. Cartier-Michaud

Acknowledgements: D. Carrillo, R. Denz, M. Leon Lopez, E. Ravaioli, F. Rodriguez Mateos, J. Steckert, J. Uythoven, A. Verweij

Outline

- Target of the study
- Parameters of the system
- Previous results
 - CLIQ only, protection ok at nominal current
 - CLIQ and QH, ok
- Results
 - New model for QDS: conservative approach
 - Scan MTTF of CLIQ PS: no impact
 - QH PS not monitored: no impact
 - QH with 11T design and not monitored: no impact
 - NB: MTTF of QH too pessimistic
- Conclusion / questions

Target of the study

- Minimal protection of the Inner Triplet at nominal current
 - 1001 CLIQ + 0008 QH
 - 0001 CLIQ + 7008 QH
- Severity of a "Main Event": 4.5 months of down time
- Protection validated if the probability of having a "Main Event" in any of the 4 IT is
 - less than 10 % in 100 y (or 2.6 % for 1 IT)
 - less than 2.1 % in 20 y (or 0.53% for 1 IT)

QH MTTF= MTTF observed in DQHDS history / 10 → pessimistic assumption

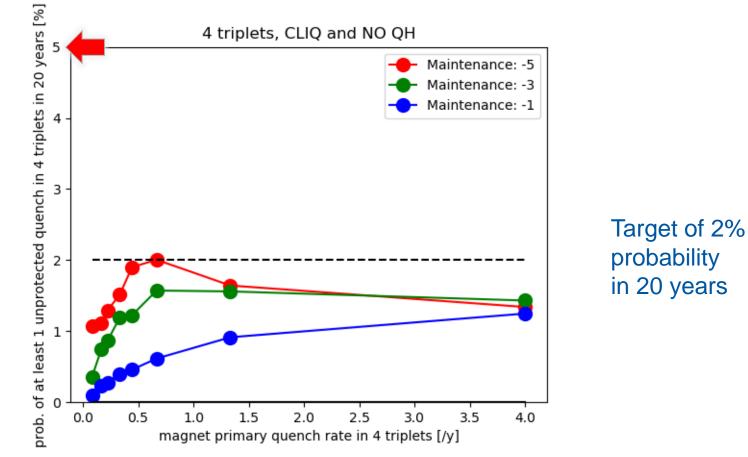
QH: HISTORY	PS24V	trigger	тн	charger	capacitor	strip	cur. breaker
MTTF [y]	2 100	4 200	8 400	4 200	25 200	350	700
MTTR [h]	5	5	5	5	5	Change magnet	5
# in 4 IT	384	384	384	192	1152	192	192

CLIQ MTTF= MTTF observed in DQHDS history / 100 → pessimistic assumption

CLIQ: GUESS	PS24V	trigger	тн		charger		capacitor	Lead	cur. breaker	
MTTF [y]	6.5	400	840	840		420 2 520 35 000		35 000	700	
MTTR [h]	5	5	5		5		5	Change magnet	5	
# in 4 IT	48	48	48		24		96	24	48	
DQHDS 11T	control	pow	power		rips	Fi	ner descripti	S		
MTTF [y]	42 000	470		34	5		Nore pessimistic values:			
Type of faults	blind	mon	tored	bli	nd		monitored failures with higher MTTF blind failures with lower MTTF			

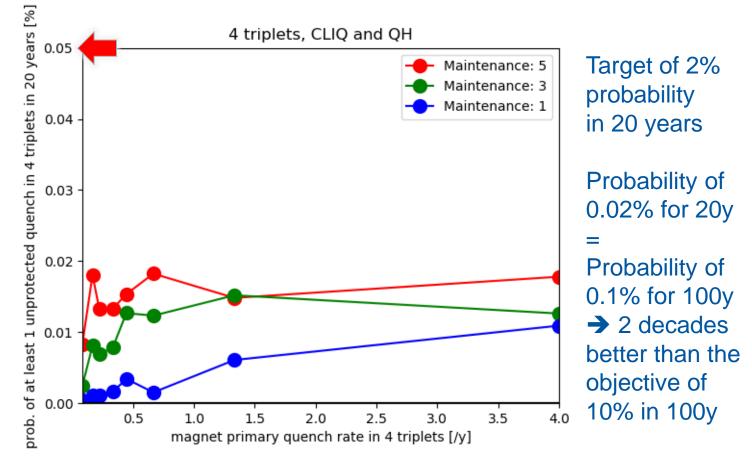
Previous results: 2019-10-18 Results

A) MTTF for QDS = 1 000 000 y

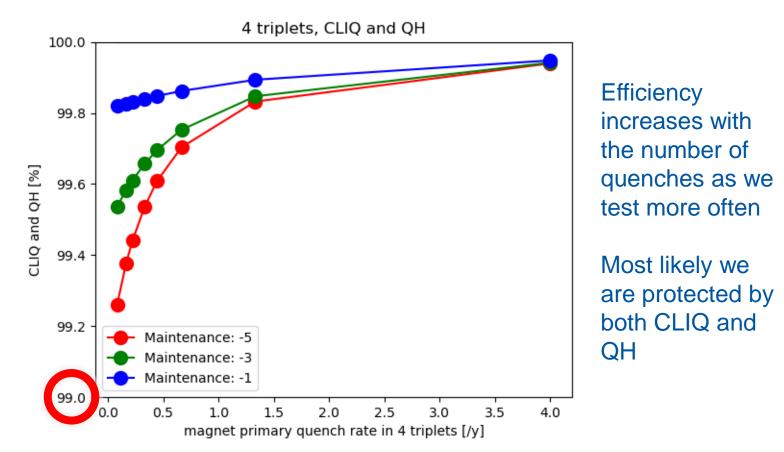

- → test of the protection part, not the detection / sending order part
- Just CLIQ: protection ok, availability ~ok
- CLIQ and QH: protection ok, availability ~~~ok
 MTTF too pessimistic for QH !

B) Scan of QDS MTTF :

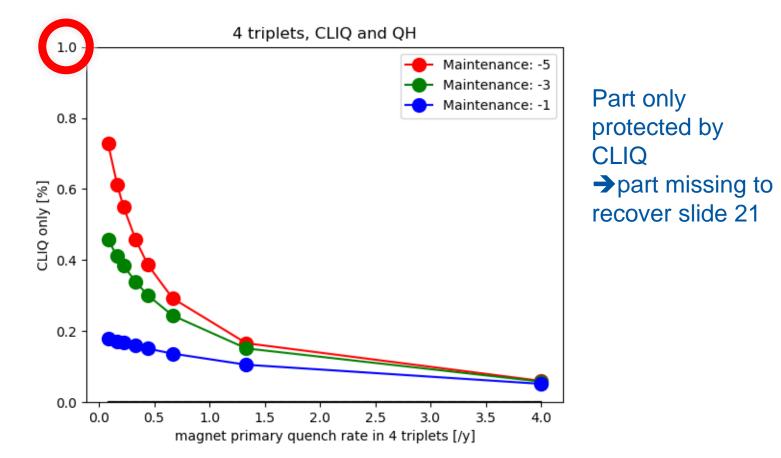
- → Conservative quench rate from study A
- → QDS becomes the bottleneck
- According to set target: protection ok, availability ~ok


Previous results: 2019-10-18 Prob. of main event with CLIQ only

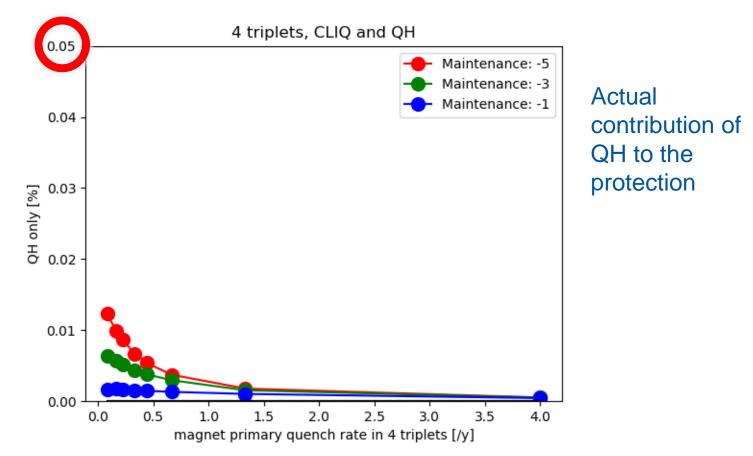
One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher


Previous results: 2019-10-18 Prob. of main event with CLIQ and QH

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

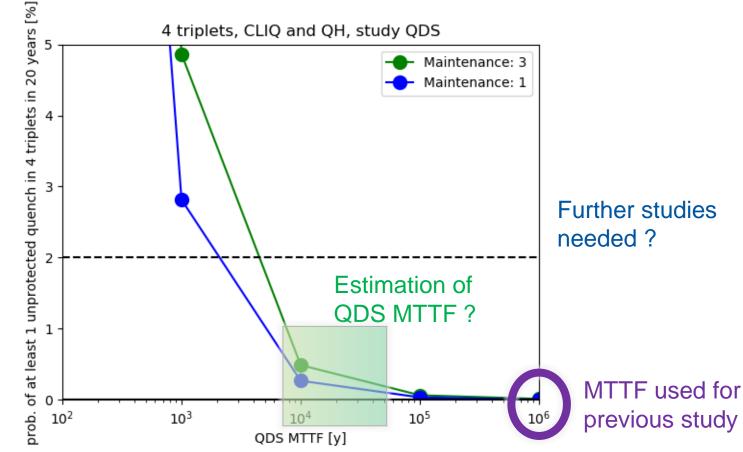

Previous results: 2019-10-18 Percentage of quenches mitigated with CLIQ and QH

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher


Previous results: 2019-10-18 Percentage of quenches mitigated with CLIQ and QH

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

Previous results: 2019-10-18 Percentage of quenches mitigated with CLIQ and QH



One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

11/22/2019

Previous results: 2019-10-18 Impact of QDS MTTF

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

New model for QDS failure rate

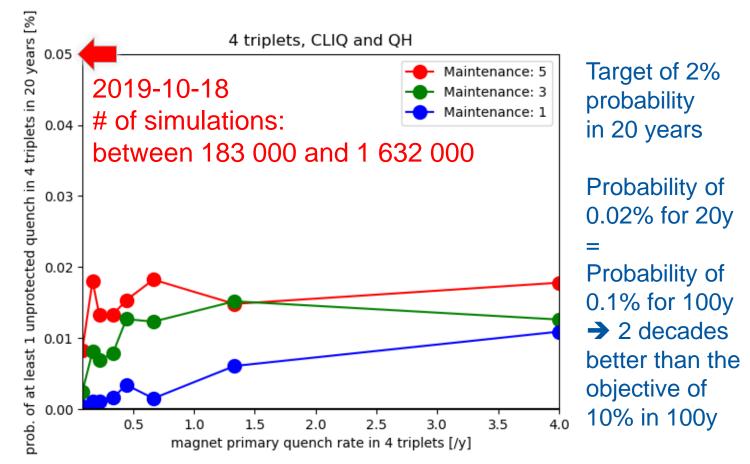
Previously: MTTF between 1 000 000 y and 100 y Failure rate should not depend on time but number of quenches

History of quenches: 2178 since LS1 (2014 commissioning)

→ Probability of failure on demand: $P = 5 \times 10^{-3}$? → 1×10^{-6}

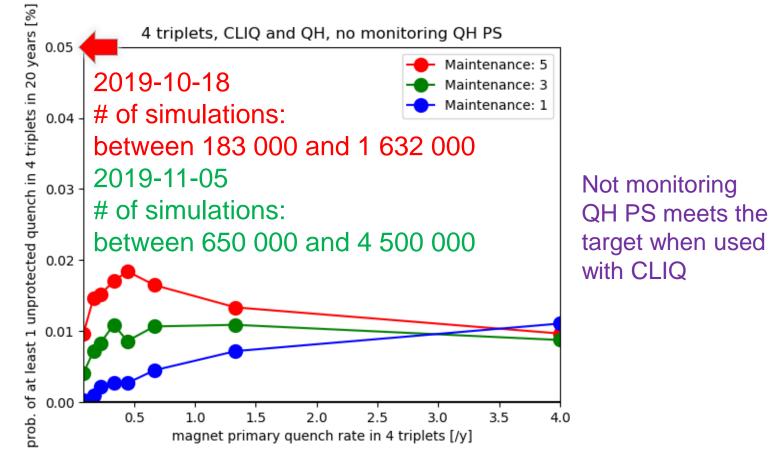
Balanced strategy: same number of "main events" due to Quench Protection System and Quench Detection System

Mean Time To primary quench [y]	1	3	6	9	12	18	24	48
# primary quenches in 1 IT during 20 y	120	40	20	13.3	10	6.5	5	2.5
Probability of failure of QDS for a balanced strategy	.9 × 10 ⁻⁶	2.7 × 10 ⁻⁶	6 × 10 ⁻⁶	9.4 × 10 ⁻⁶	×	1.2 × 10 ⁻⁵	1.6 × 10 ⁻⁵	2 × 10 ⁻⁵

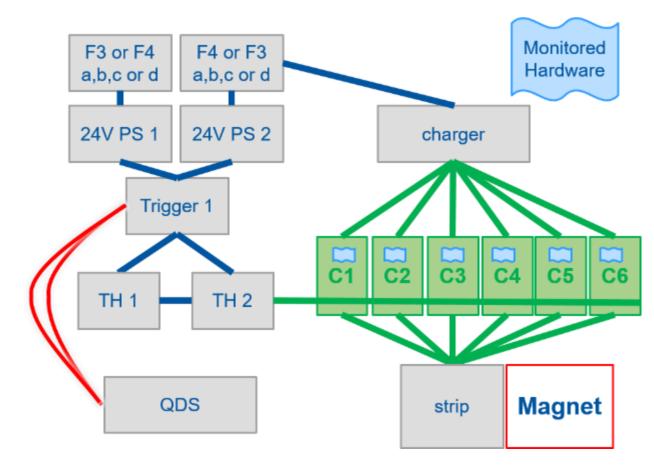


Scan MTTF of CLIQ PS

- Only parameter from a datasheet
- 6.5 y, compare to 2100y for QH
- Monitored device: detecting fault tend to increase the number of repairs but to avoid blind fault in the unit
- MTTF: 6.5, 21, 63, 210,630, 2100, 6300, 21000
- → CLIQ only: no impact
- → CLIQ and QH: no impact

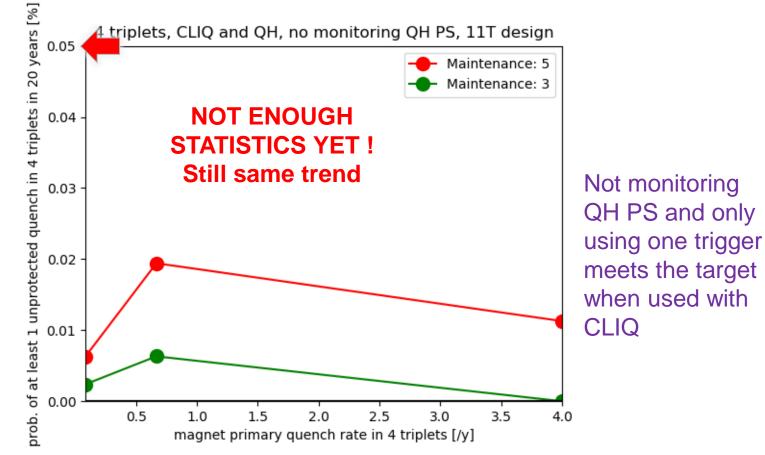

Prob. of main event with CLIQ and QH

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher


Prob. of main event with CLIQ and QH (not monitoring QH PS)

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

Prob. of main event with CLIQ and QH (not monitoring QH PS + 11T design)

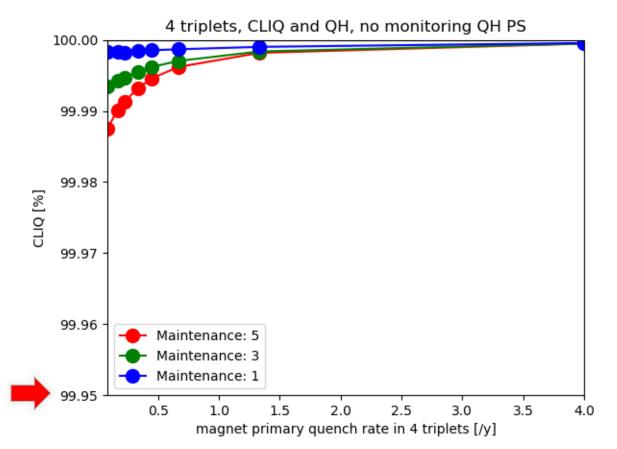

One trigger box like 11T design

Possibly two signals from QDS merged before the trigger

Design already terminated, ready to be send to Japan

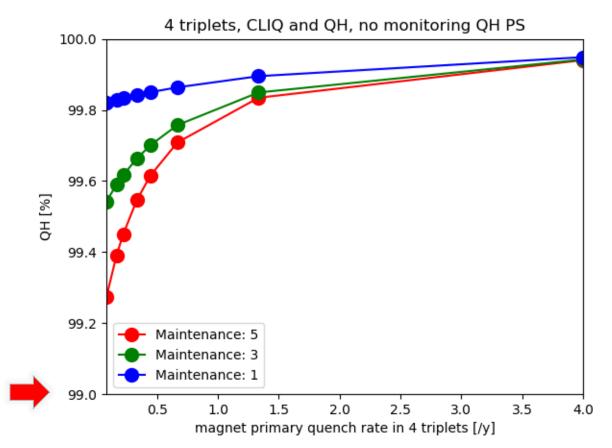
Prob. of main event with CLIQ and QH (not monitoring QH PS + 11T design)

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher



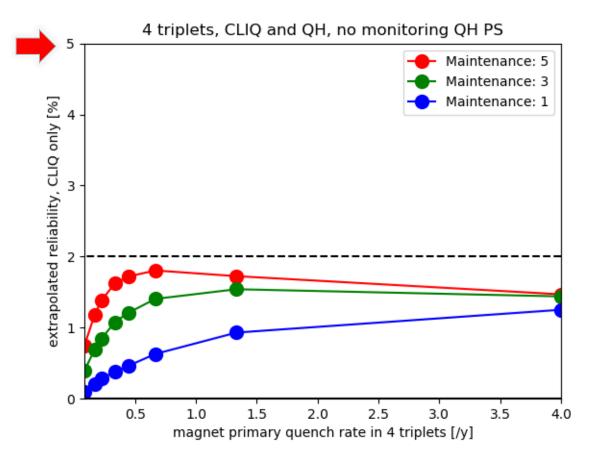
QH only (extrapolations)

- Previous results:
 - CLIQ only, using pessimistic MTTF, meets the target
 - Adding QH to CLIQ increase the reliability as it adds redundancy
 - QH reliability and availability was low, still enough to increase overall reliability and availability
- New results: need for CPU to perform new simulations, still pessimistic extrapolation from previous simulations


Percentage of quenches mitigated by CLIQ

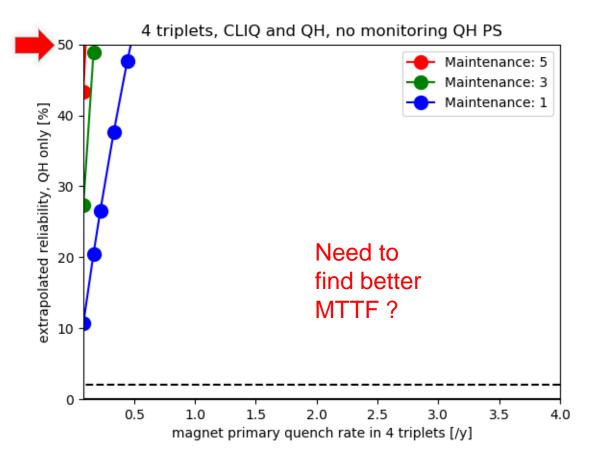
One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

Percentage of quenches mitigated by QH



One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

11/22/2019


Extrapolated reliability using only CLIQ

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

Extrapolated reliability using only QH

One magnet quenching implies the 5 neighboring magnet have to quench, actual number of quenched magnets is 6 times higher

11/22/2019

Minutes of previous meeting: Actions

- Agreement on MTTFs used for this study
 - CLIQ: check with military hand book requested by Felix
 - QH: need for an exploration of parameters to increase availability and reliability

Minutes of previous meeting: Actions

- Thomas should run further studies:
 - QDS MTTF sensitivity study to better estimate the cut off value for unacceptable failure probability of QDS
 Probability of failure on demand for a balanced cause of failure computed
 Quench history far from excepted probabilities
 - Power supply of CLIQ MTTF analysis, as this MTTF is the only one coming from a datasheet and it is quite low compared to any other monitored components
 - ➔ no impact
 - Removing the monitoring of power supplies in QHs (asked by D. Carrillo). They could be monitored in the future, but for the moment this is not foreseen.
 - ➔ no impact (when also using CLIQ)

Asked since previous meeting: Actions

- Thomas should run further studies:
 - Test of 11T QH design, using only one trigger (and PS not monitored)
 → no impact (when also using CLIQ)

Minutes of previous meeting: Actions

- Thomas should run further studies:
 - CLIQ and QH MTTF x10 to see the increase in availability.
 - → Not addressed yet, need for CPU
 - CLIQ MTTF x 100 and QH MTTF x 10 to see the increase in availability.
 - ➔ Not addressed yet, need for CPU
 - Conservative strategy of not repairing strip until maintenance as CLIQ seems enough to mitigate quenches.
 - ➔ Not addressed yet, need for CPU

Minutes of previous meeting: Open Questions

- Could a short circuit in the power supply of CLIQ or QH could be propagated upstream to the current breakers and UPS?
- What is the time scale of a ramp down for IT?
 → Emmanuele ~ tens minutes → ask S. Yammine (PC)
- R. Denz and A. Verweij recalled frozen FPGA channels in QDS as well as some issues in the detection of quenches for a quadrupole. The MTTF of components should be updated?

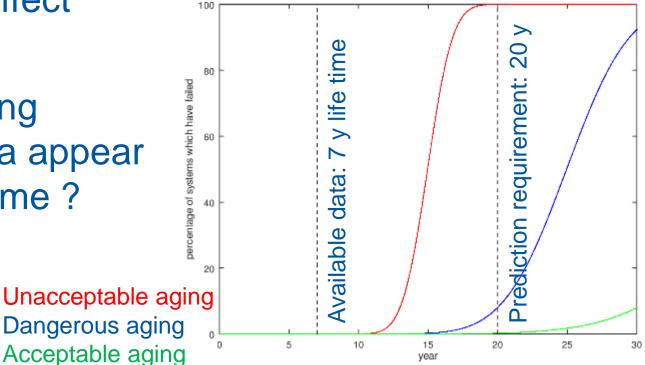
Not addressed yet

CLIQ was already tested, although with a design different from the final one. Is it a way to better estimate MTTF?
 Not addressed yet

Discussion

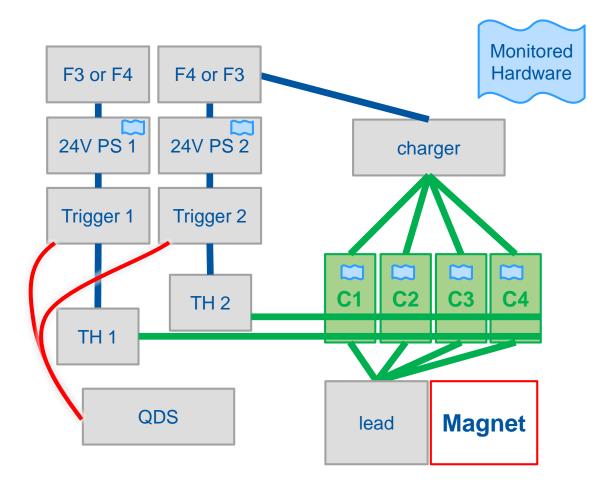
- Do we want to lower the threshold at which CLIQ is operational ?
 - Emmanuele would need to run new simulations
 - Cost might significantly increase (price of capacitors)
- Actions to take with respect to low / high active signals
- Possible reliability tests on CLIQ prototypes
 - 3 to 18 discharges / hours into an inductive load
 - 2 to 9 internal discharges / hours

Thank you for your attention


Back up slides

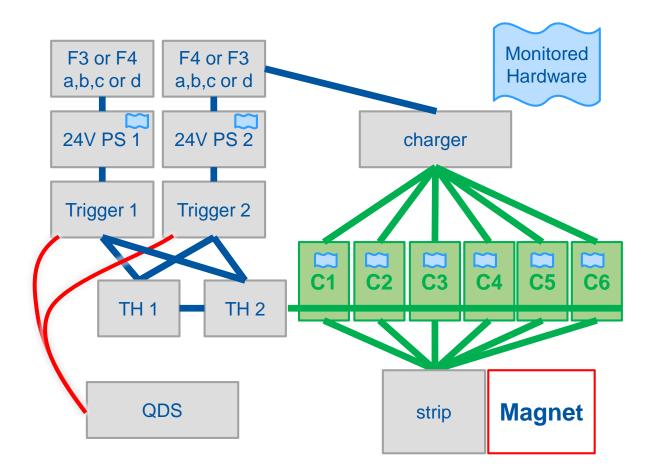
Parameter estimation: aging ?

- Estimation of MTTF = period x number of elements / number of faults
- → No aging effect
- What if aging phenomena appear at 15y lifetime ?

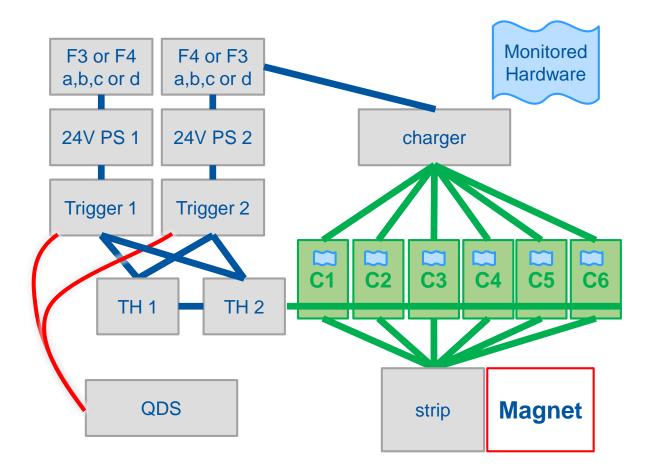

Requirements: # of quenches ?

- Phase 1: individual training <u>outside tunnel</u>
 Once in the lifetime, 4-12 quenches <u>per magnet</u> in 1 month rate of 28 – 84 quenches / year / per magnet during 1 month MTTF [y] of one magnet: 0.036 – 0.12
- Phase 2: commissioning of triplets
 After each long shutdown, 1-3 quenches per triplet in 1 month rate of 7 – 21 quenches / year / per triplet during 1 month MTTF [y] of one magnet considering 6 magnets have to be protected in an IT: 0.85 – 0.30
- Phase 3: operation
 ~20 years of lifetime, 0.25 1 quench per triplet per year

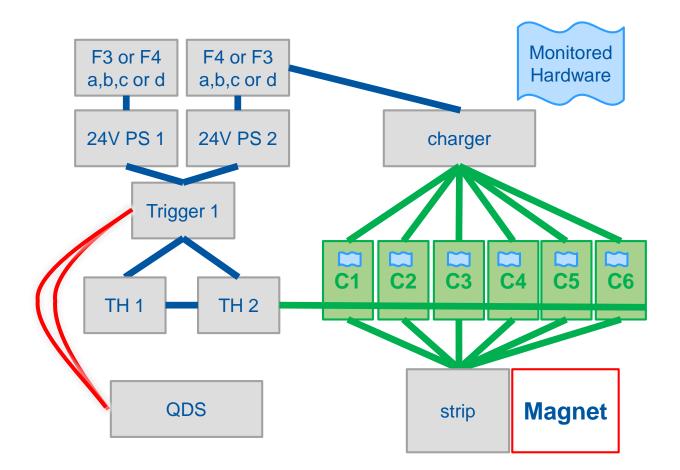
MTTF [y] of one magnet considering 6 magnets have to be protected in an IT: 24 – 6



System architecture: CLIQ



System architecture: QH



System architecture: QH (PS no monitored)

System architecture: QH (PS no monitored)

