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Goal of this meeting

Sharing our research on forecasting with time series and experiences in 
commodity market risk management

Very basic intro to a number of time series models

Discussion about its usefulness in the context of liquidity measures
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Models

All models are wrong, but some are useful (George E. P. Box)
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Time Series Models

Why do we need and use time series models?

● Financial data almost always includes a time element (i.e. prices, returns)

● Thus time series and panel data dominate the empirical approach

What do we do with models?

● Description

● Prediction (forecasting)

● Establishing causality
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Components of an observation

At time t, we observe certain demand:

Dt = Systematic Component + Random Component

Systematic Component: Is the part that can be modeled and used for 
forecasting 

Random Component: Random processes cannot be predicted

𝐹𝑡+1 = 𝐸 𝐷𝑡 + 𝐸 𝜀𝑡
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Component of a forecast / fitted value
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𝐹𝑡+1 = 𝐸 𝐷𝑡 + 𝐸 𝜀𝑡

𝐸 = Expected value

𝐹𝑡 = Forecast of demand at period t

𝐷𝑡 = Demand at period t

𝜀𝑡 = 𝐹𝑡 − 𝐷𝑡 = Forecast error at period t



What can be predicted?

The predictability of an event or a quantity depends on:

 What component dominates the process? Is it the systematic or the random?

 how well do we understand the factors that contribute to it?

 how much data are available?

 whether the forecasts can affect the thing we are trying to forecast.
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8

What time will be the sunrise 
tomorrow?

What will be the exchange rate 
euro/dollar in one month?

What is the demand of electricity 
during the next year?

 Lotto number tonight?
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-Systematic or random? In 

between?

-Do we understand the process?

-How much data do we have?

-Does the forecast influence the 

outcome?

What can be predicted



Forecasting methods
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Forecasting methods - Quantitative

Involves mathematical and/or statistical techniques

- Depends on data availability 

 Forward looking (aggregated market expectations)

Causal models and time series (best when stable demand)

Simulations (imitate consumer choices)
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Forecasting methods - Qualitative

Subjective methods, rely on human judgment, intuition, experience and opinion

Used when situation is vague, little amount of data

● New technology

● New products
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Experts

USDA:  Monthly reports on prices, yield, demand

● Based on surveys to producers and field measurement data

● Yield based on weather adjusted trends

 Financial analysts

Advantages: Can account for structural breaks, shocks, rapid changes
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Quantitative forecast: Time series

1
3

Period Demand

2010-I 8000

2010-II 13000

2010-III 23000

2010-IV 34000

2011-I 10000

2011-II 18000

2011-III 23000

2011-IV 38000

2012-I 12000

2012-II 13000

2012-III 32000

2012-IV 41000



Time series

A time series is a set of observations, each one recorded at a specific time t

We use time series when we believe that past data can provide useful 
information about the future

 Time series models include Exponential Smoothing, Autoregression Moving 
Average (ARIMA), State-Space Models
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Other quantitative forecast models

 Forward looking:

▪ Does not assume the 
future will be like the 
past, instead tries to 
capture aggregated 
expectations from the 
market

▪ Futures and options 
markets

▪ Sentiment analysis 
from social media 
(Twitter, google 
trends)
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In-sample vs out-of-sample forecasts

 In-sample: fitted values, 
predictions done within the 
available data

▪ Out-of-sample: Data not used to 

estimate the level, trend, and 

seasonality (can be used to 

evaluate the performance of the 

forecast ex-post)



Forecast error
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𝜀𝑡 = 𝐹𝑡 − 𝐷𝑡



Forecast error:

Evaluation: Forecast error (point forecast)
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Error in time t:

Forecast in time t

Demand in time t

𝜀𝑡 = 𝐹𝑡 − 𝐷𝑡



Forecasting with time series 
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Building Blocks:



Time series models

Many time series models can be used in forecasting

We will briefly go over basic elements of two models

● Exponential smoothing

● ARIMA 

 These models and their extensions are among the most popular models in 
finance, marketing, and supply chain management
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Time series decomposition

 𝐷𝑡 = Systematic Component 𝑋𝑡 + Random Component (𝜀𝑡)

 The systematic component is a function of: Level (Lt), Trend
(Tt), and Seasonality (St)
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Exponential smoothing models

No trend, no seasonality

Holt’s model Winter’s modelSimple Exponential Smoothing

Trend but not seasonality Trend and seasonality
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Exponential smoothing methods

 Exponential smoothing forecasts are weighted averages of past 
observations, with the weights decaying exponentially as the 
observations get older

 Estimates of level, trend, and seasonality are updated after each 
demand observation

 Estimates incorporate new data that are observed

 Updated observation: 

Smoothing Constant * New Information + (1 - Smoothing Constant ) * Past 
Info
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Trend and seasonality corrected exponential smoothing
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Autoregression Integrated Moving Average (ARIMA)

ARIMA models are very popular in finance

Observes the behaviour of a random variable over time

Based on autocorrelation pattern between observations of the time series
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White noise

 Is the simplest model

● 𝑦𝑡 = 𝑒𝑡

 The current observation corresponds 
to a random component

No information left for prediction

We may assume its distribution with 
a mean of zero
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Moving averages, MA (q)

Current observations may be explained as a moving average of past errors

𝑦𝑡 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 +⋯+ 𝜃𝑞𝑒𝑡−𝑞

A moving average of order q =2 would be:

𝑦𝑡 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2
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Autoregression models, AR(p)

An autoregressive model forecasts the current value of 
variable (𝑦𝑡) as a linear function of past observations (lags) 
of the variable (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑛)

An autoregression model of order p can be written as:

𝑦𝑡 = 𝜙1𝑦𝑡−1 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝑒𝑡

 Then, an autoregression of order p =3 would be:

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝑒𝑡
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Random walk

 Is a form of autoregression model AR(1) with 𝜙1 = 1

𝑦𝑡 = 𝑦𝑡−1 + 𝑒𝑡

 A random walk means that the best forecast of tomorrow is today’s value

Error term is like news, things that we cannot predict

Some people say this is the best forecast for stock and commodity prices
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ARMA (p,q) models

We can combine AR(p) and MA(q) models

 Let’s suppose our data can be explained by an ARMA (2,1) then the model 
would have 2 lags for the autoregression part and one for the moving average

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝑒𝑡 + 𝜃1𝑒𝑡−1
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Let’s rewind a bit: Measuring dispersion

Variance: measures the average amount that data vary from the mean

𝑉𝑎𝑟 𝑥 = 𝑆𝑥
2 =

∑(𝑥𝑖 − ҧ𝑥)2

𝑁 −1
=

∑(𝑥𝑖 − ҧ𝑥)2

𝑁 −1
, where 𝑥𝑖 are 

observations i = 1,… , n and  ҧ𝑥 =
∑ 𝑥𝑖

𝑁

 The standard deviation is the square root of the variance

𝑆𝑥 = 𝑉𝑎𝑟 𝑥

Note: The following slides are not needed for this audience, but just to be self-

contained
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Let’s rewind a bit: Measuring association

 The simplest way to see whether two variables are associated is to look at their 
covariance

Covariance measures the common variation of two variables (x,y)

 Cov(x, y) = 𝑆𝑥𝑦
∑ 𝑥𝑖− ҧ𝑥 (𝑦𝑖−ത𝑦)

𝑁 −1

We are interested on measuring whether changes in one variable are met with 
similar changes in the other variable

When one variable deviates from its mean 𝑥𝑖 − ҧ𝑥 , how does the other one 
deviates from its mean 𝑦𝑖 − ത𝑦 ? 
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Correlation

Covariance is helpful measuring association between two variables but it 
depends on a scale, which may complicate its use

 To overcome this problem, covariance can be “standardized”

 The result is the correlation:

● 𝑟𝑥𝑦 =
1

𝑁−1

∑ 𝑥𝑖− ҧ𝑥 (𝑦𝑖−ത𝑦)

𝑆𝑥 𝑆𝑦

Measures the extent of the linear relationship between two variables
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ARIMA models and correlation

ARIMA models are based on finding the correlation between today’s value and 
past values 𝑦𝑡−𝑛 or past forecast errors 𝑒𝑡−𝑛

We measure the association between

𝑦𝑡 and 𝑦𝑡−1, 𝑦𝑡 and 𝑦𝑡−2, 𝑦𝑡 and 𝑦𝑡−3
and / or 

𝑦𝑡 and 𝑒𝑡−1, 𝑦𝑡 and 𝑒𝑡−2, 𝑦𝑡 and 𝑒𝑡−3

 In that way we determine the amount of lags that “best” explain the data
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Stationarity

What does the I means in the ARIMA?

Autocorrelations (covariance's, variances, means) have no meaning if they 
change through time (are non constant over the sample)

A time series is stationary if the properties of its distribution do not change 
through time
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Differencing time series

 A way to stabilize a series that is non-stationary, is to eliminate the trend by 
differencing the data

Differencing: Compute the difference between two observations

Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1

 If data is stationary after differencing it once it is called I(1), integrated of order 
one. Sometimes data needs to be differenced more than once to become 
stationary

 That is what the I stands in the ARIMA, the number of times the data needs to be 
differenced to become stationary
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Model selection and check assumptions

 Information criteria

● Goodness of fit + penalty 

Check model assumptions

● Test residuals for remaining autocorrelation, constant variance, normality, 
…
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ARIMA algorithm
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Extensions to the basic models

 If constant variance does not hold we can check for models of heteroscedasticity 

ARCH, GARCH, Stochastic volatility

 If data exhibit structural breaks (differences in levels, in trends, or in seasonality 
between periods) we may use models like 

● Regime switch

●Markov models
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Forecasting Volatility

GARCH (1,1)

Generalized Autoregressive 
Conditional Heteroscedasticity

𝜎𝑡+1
2 = 𝜔 + 𝛼𝜀𝑡

2 + 𝛽𝜎𝑡
2

Where 𝛼 + 𝛽 < 1
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Multivariate models:  Vector Autoregression

𝑌𝑡 = 𝜙0 + 𝜃11𝑌𝑡−1 + 𝜃12𝑋𝑡−1 + 𝜀1,𝑡
𝑋𝑡 = 𝜙1 + 𝜃21𝑌𝑡−1 + 𝜃22𝑋𝑡−1 + 𝜀2,𝑡

Σ =
𝜎𝑦
2 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑥
2
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Multivariate models
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Extension: Density forecasts

Basic models look mainly 
at only two moments of the 
distribution, but higher 
moments may also play a 
role

Density forecast is a 
prediction in the form of a 
probability
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 Important in an environment of high 
variability

Density forecasts provide an entire 
distribution over possible outcomes
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Estimation

Similar to the point-forecast case, 
density forecast can be generated 
by:

Historical data

 Implied forward looking procedures

Expert based
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Estimation from historical data

Not hard to obtain predictive densities by using time series 

 Assumption: The system will remain stable over time 

 GARCH models and allowing the distributions of errors to be characterized by 
alternate forms (i.e. Normal, T, GED) 

 Autoregressive Conditional Skewness and Kurtosis models also exist (i.e. Bali et 
al 2008) 

 Quantile regression (Lima et al 2014) 

 Non parametric approaches (i.e. Nearest-neighbor, kernel smoothing), 
Bayesian. 
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Estimation from forward-looking procedures

Derivative markets are the main tools for risk management and price (and 
uncertainty) discovery. Therefore convey information about aggregated market 
expectations 

 Predictive densities can be obtained from a set of option prices 
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Black-Scholes model

Black-Scholes Price of a Call Option:

𝐶 = 𝑆 + 𝑁 𝑑1 − 𝑃𝑉 𝐾 × 𝑁(𝑑2)

Where:

𝑆 is the current price of the asset

𝑃𝑉 𝐾 is the present value of the strike (exercise) price

𝑁 𝑑 is the cumulative normal distribution

Probability that an outcome from standard normal distribution is below 
certain value
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 𝑑1 =
ln(

𝑆

𝑃𝑉 𝐾
)

𝜎 √𝑇
+

𝜎 𝑇

2
and 𝑑1 = 𝑑1 − 𝜎√𝑇

Where 𝜎 is the annual volatility, and 𝑇 is time to expiration

Only five inputs are needed to price the option

● Asset Price, Strike Price, Exercise date, Risk-free rate

● Volatility of the asset
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Implied volatility

Of the five requires inputs in the Black-Scholes formula, only 𝜎 is not observable 
directly:

 If we observe options prices, and have data of the other arguments of the 
function then we can obtain implied volatility

 The volatility of an asset’s return that is consistent with the quote price of an 
option on the asset

 Forecast of variance
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Estimation:

Breeden and Litzenberger (1978) showed that a risk-neutral 
density (RND) can be inferred from European call prices 
c(X) 

𝑓 𝑥 = 𝑒𝑟𝑓𝑇
𝜕2𝑦

𝜕𝑥2
= 𝑒𝑟𝑓𝑇 𝑝𝑑𝑓(𝑆𝑡)

where 𝑥 is the strike price, 𝑆𝑡 asset's price, 𝑟𝑓 risk free rate, 
and 𝑇 time to expiration

● Recall: the pdf is the derivative of the cdf

 The task is to find a method that captures RND and 
provides a reasonable approximation to observed market 
prices
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Estimation:

 Many approaches exist, roughly fall into three categories: 

 Fit a parametric density function: 

● Expansion methods: add corrections 

● Generalized distributions: use distributions with higher 
moments 

●Mixture models: create new distributions from 
combination 

 Non Parametric Approximation: 

● Kernel methods (Ait-Sahalia and Lo, 1998)

● Curve fitting: Interpolation of volatility smile (Shimko 
1993) 

 Model of return process: Implied trees, Black-Scholes 52



Training (Validation) period
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Real-World Densities

RND do not account for risk (risk-free)

 If investors are risk averse then RND would not provide 
correct distributions (deVincent-Humphreys and Noss 2012) 

 We would need to calculate a distribution that reflects the 
dynamics of real prices. This is called real-world density 
(RWD) (Taylor 2007) 

 From RND to RWD:

● assume a form of risk aversion (utility function) (Bliss 
and Panigirtzoglou, 2004).

● Use statistical methods (recalibration) Fackler and 
King (1990) 
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Experts based

 Much work is needed to understand how this may work, how can it be 
implemented? 

 Isengildina-Massa et al (2011) Empirical confidence intervals for USDA 
commodity price forecasts 

 Density forecast are based on the distribution of historical forecast errors 
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Evaluation

How do we evaluate out-of-sample performance of density 
forecasts (ex-post)? 

Hall and Mitchell (2007) propose: 

● Sharpness (Accuracy): 

● How accurate is the prediction? 

● Calibration (Goodness of fit): 

● Is the distribution correctly specified? 

● Statistical compatibility of probabilistic forecasts 
and observations; realizations should be 
indistinguishable from random draws from 
predictive distributions 
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Recall: Forecast error
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𝜀𝑡 = 𝐹𝑡 − 𝐷𝑡



Sharpness (Predictive Accuracy)

 To measure accuracy we use scoring 
rules:

 Log of the pdf at the realized value

Average log score:

1

𝑛
෍

𝑡=0

𝑛−1

log(𝑓𝑖 𝑦𝑡 )
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Calibration

Density forecast are optimal if the model for the density is 
correctly specified (Diebold, Gunther, and Tsay 1998) 

Calibration can be measured with Probability Integral 
Transform (PIT)

PIT is the CDF of the forecast at the realized observation:

𝑃𝐼𝑇 = 𝐶𝐷𝐹(𝑌𝑡)
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If distribution coincides then PIT are iid U(0,1)
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Combination

 The point-forecast literature has found that forecast combinations usually 
outperform any individual forecasts 

● Decreases the risk of choosing the wrong model (Diversification) 

● Increases the amount of information from different sources 

 The question is, would forecast combination also work for density forecasts? 
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 In Trujillo-Barrera, Garcia, and Mallory (2016) we develop and evaluate quarterly 
out-of-sample individual and composite density forecast for U.S. hog prices 
using data from 1975.I to 2014.IV 

 Estimation methods: 

● Time series 

● Expert-Based (USDA, Iowa State University) 

 How do we combine individual forecasts? 
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How do we combine individual forecasts?

 To aggregate the densities we use 
linear and logarithmic combinations

 Linear: 𝐹𝑐 = ∑𝑖=1
𝑁 𝜔𝑡 𝐹𝑡,𝑖

 Logarithm:

𝐹𝑐 =
ς𝑖=1
𝑁 𝜔𝑡,𝑖𝐹𝑡,𝑖

ς𝑖=1׬
𝑁 𝜔𝑡,𝑖𝐹𝑡,𝑖
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Weights

How do we obtain the weights of the weighted average of individual models? 

 Weighting schemes include: 

 Equal weights (EW) (simple average) 

 Mean squared error weights (MSEW): based on point forecast metrics 

 Recursive log scores weights (RLSW): based on density forecast metrics 
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Findings

 In the context of U.S. Hog prices we found: 

 Equal weighted logarithmic combinations of density forecasts always dominate 
individual forecast and linear combinations 

 Therefore room for improvement over experts' forecasts 

 Equal weights outperform more complex weighting schemes (Forecast 
combination puzzle) No need for complicated weighting? 

 Point forecast techniques outperform density forecasts on times of lower 
uncertainty, while density forecasts dominate in times of higher volatility 
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Other developments: Machine learning

Use of big data

Precision data

CERN’s domain

Google: http://www.unofficialgoogledatascience.com

 Facebook: https://research.fb.com/prophet-forecasting-at-scale/

Algorithms that look for patterns in data:

● Classification: i.e. Cluster analysis, neural networks, …

● Dimension Reduction: i.e. Factor analysis

● Supervised learning: Regressions
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Relationship with liquidity

A lot of financial tools deal with prices

Prices are hard to understand and predict

●Market efficiency theory vs behavioral finance

 The liquidity process and its determination is still not well understood, 
particularly in the high frequency domain

 Time series have been used in the finance literature to model the limit 
order book, but complications arise from imposing regular time intervals

● Aggregation

● Snap-shots
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Recent work

Hasbrouck (2019) proposes the use of VHAR (Vector Heterogenous 
Autoregressive Model) 

VHAR consist of a subsample of lags in a VAR that aims to capture, long, 
medium and short run dynamics a process

● Instead of using all lags up to certain number

De Boer, Gardebroek, Trujillo-Barrera, and Pennings (2019) use this model to 
explore liquidity spillovers in the soybean crush process

68



Mixed frequency models

We may want to include in a model variables linked to different time frequencies

● Take for instance in a macroeconomic example the use of GDP indicators 
(quarterly), inflation (monthly), and prices (daily).

 The “longer” term variable would have missing values that would be treated as 
latent

● Solutions: 

● Impose a functional form to the structure of the missing values 
obtained from the observed values (i.e. Mixed frequency models 
(MIDAS))

● Use of State-Space models (this may be a promising venue for our 
research)
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Discussion on how does this models apply to liquidity

Advantages

Problems

 Implementations

 Further work
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