Detailed studies on the E4/E5-defect as main current generator

Alexandra Junkes¹, Eckhart Fretwurst¹, Ioana Pintilie² and Gunnar Lindström¹ ¹Institut für Experimentalphysik, Hamburg University ²NIMP, Bucharest-Margurele

16th RD50 Workshop 31.05-02.06.2010, Barcelona

Why is E4/E5 interesting?

- E4/E5 is correlated to LC
- Bistability found on E4/E5
- Now traceable up to more than 300°C
- What type of defect is E4/E5?
 How much impact on LC?
- Using bistability one can track the transformation to L-defect
- Annealing behaviour like V₂
 →Vacancy related (maybe V₃)

L-defect appears in oxygen rich material

No L-defect in FZ material!

A. Junkes 16th RD50 Workshop, Barcelona

Transformation of E4/E5 to L in MCz

 $V_3 \rightarrow V_3 O$

Transformation from E4/E5 to L-defect

Epi-ST

Epi-DO

Similar observation in Epi but delay for oxygen lean material

V₃ Activation Energy for Migration

DLTS, Epi-Do, neutrons

14.05.2010

iii

Fitting result

- Annealing of E4/E5 traceable with help of bistability
- •E4/E5 transforms to L-defect
- •Similar annealing behaviour like V_2 to X-defect (V_2O)
- •If E4/E5 is V_3 than L is most likely V_3O

Correlation of LC to E4/E5 & E205a

Via difference spectra

Correlation for Epi-St 100um

Low fluence proton irradiation

E4/E5 hole capture: σ_h≈10⁻¹³ cm²

But what happens between 100°C and 140°C?

Leakage Current

Annealing (100°C-120°C)

Similar LC annealing for Epi-St and Epi-DO

Very low concentration ≈10⁹ cm⁻³

Recovery of LC during isochronal annealing

In MCz In FZ 7.0x10⁻¹⁷ 7.0x10⁻¹ ldep Idep 6.0x10⁻¹⁷ 6.0x10⁻¹⁷ ∆I (1A) ∆I (1A) 5.0x10⁻¹⁷ 5.0x10⁻¹⁷ 4.0×10^{-17} 4.0x10⁻¹⁷ $\alpha (A/cm^3)$ $\alpha ~(A/cm^3)$ 3.0x10⁻¹⁷ 3.0x10⁻¹ 2.0x10⁻¹⁷ 2.0x10⁻¹⁷ 1.0x10⁻¹⁷ 1.0x10⁻¹⁷ 0.0 -1.0x10⁻¹⁷ 0.0 0 50 100 150 200 250 300 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 annealing temperature ($^{\circ}$ C) annealing temperature ($^{\circ}$ C)

Recovery decreases, while E4/E5 is still fully recrovered

E4/E5 not solely responsible for LC

Similar behaviour in FZ and MCz

➔ no oxygen dependence

Relaxation of disordered region may lead to Change of :

Intercenter charge transfer / lattice stain

Summary

- Correlation between E4/E5 and LC found
- No explanation for decrease of LC between 100°C and 140°C
- Recovery of the LC due to recovery of E4/E5 decreases
- Reorientation of disordered region has impact on LC and E4/E5
- E4/E5 a tracker for initial anneling of the disordered region

Outlook

A. Junkes 16th RD50 Workshop, Barcelona

Origin of LC annealing?

No explanation due to defect seen in DLTS

