Charge Collection and Space Charge Distribution in Epitaxial Silicon Detectors after Neutron-Irradiation

Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner, Jörn Lange

Hamburg University

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

16th RD50 Workshop, Barcelona, June 2010

Outline

- Introduction
- Transient Current Technique (TCT)
- Simulation of TCT current signal for unirradiated diodes
- Simulation of TCT current signal for irradiated diodes
 - Electric field and space charge distribution
 - Fit of the Charge Collection Efficiency (CCE) / Parameterisation of $\tau(E)$
- Results
 - Trapping time τ
 - Space charge distribution
- Summary

Introduction

Trapping

- Most limiting factor for S-LHC
- Charge Collection Efficiency (CCE) decreases

Aim of this work

- Determination of trapping time τ
- Taking into account the structure double peak to the electric field
- Investigation of field dependence of τ

Introduction

Why field dependent?

τ constant

- common description for ϕ < 2-10¹⁴ cm⁻² (FZ, MCz)
- not suitable for $\phi > 10^{15}$ cm⁻² (higher CCE observed, especially at high U)

τ field or voltage dependent

motivated by:

- field dependent trapping cross section $\sigma(E)$?
- field enhanced detrapping ?
- trap filling ?

Investigated samples

Samples and irradiation

n-type epitaxial silicon pad detectors

- thickness d: 100 µm and 150 µm
- area: 2.5 x 2.5 mm² (small)
 or 5 x 5 mm² (big)
- neutron fluence ϕ : **1**•10¹⁴ to **4**•10¹⁵ cm⁻²
 - \Rightarrow type inversion for ϕ > 2.10¹⁴

Transient Current Technique (TCT)

- Front side injection (p+ side)
- 660 nm / 670 nm laser light (penetration depth 3 µm)
- \Rightarrow electron signal

- Short laser pulse: FWHM ~ 40 ps
- Small pad diodes: C = 4.3 pF for $d = 150 \text{ }\mu\text{m}$
- 1 GHz Oscilloscope
- \Rightarrow measured rise time = 650 ps

(for the small 150 µm thick diodes)

Simulation of TCT current signal for unirradiated diodes

Circuit simulation

Thomas Pöhlsen, Charge Collection in Si Detectors

Simulation of TCT current signal for irradiated diodes

- Number of drifting electrons N reduces while drifting (trapping time τ)
- Trapping time, space charge distribution and E-field not known \Rightarrow Fit space charge distribution N_{eff} and trapping time $\tau(E)$

Simulation for irradiated diodes

 N_{eff} = const from U_{dep} = 250 V (CV measurements)

 \Rightarrow data not well described with N_{eff} = const

Parameterisation of space charge distribution

Thomas Pöhlsen, Charge Collection in Si Detectors

Simulation for irradiated diodes

 \Rightarrow data described with N_{eff} linear in x

Fit of the CCE curve

Results: trapping

Strong field dependence seen! Less trapping for high fields.

Previous investigations by G.Kramberger: $\tau = const$, charge correction method, fluences up to $\phi = 2 \cdot 10^{14} \text{ cm}^{-2}$

Results: space charge

Charge multiplication

Charge multiplication seen for 100 μ m thick diodes and U > 800 V

Summary

Charge collection and trapping can be well described taking into account

- distortions to the space charge distribution leading to parabolic electric fields (double peak)
- field-dependence of trapping time τ * (to fit CCE curves)
- circuit effects (to simulate TCT signals)

Trapping probability decreases with increasing E-field \Rightarrow high E-fields desirable to reduce trapping probability 1/ τ *

Neff larger (more negative) for lower temperatures

* here τ is an effective trapping time including trapping and detrapping

Backup Slides

U_{dep} dependence on temperature

Electric Field and Space Charge Distribution N_{eff}

homogenous space charge distribution \Box linear electric field

linear space charge distribution \square parabolic electric field

Determination of $\tau(E)$

Initial guess of field distribution (i.g. linear, parabolic)

- Assumption of electric field parameters
- Fit of CCE curves by simulation with parameter τ
- Agreement of measured and simulated TCT signal?
 Yes / No

modification of E(x)

Determination of Charge Collection Efficiency from TCT Measurements

TCT signal

Charge Collection Efficiency (CCE)

- Unirradiated diodes: CCE = 1
- Trapping reduces collected charge Q.

Overview of E(x), I(t) and CCE(U) for a 4-10¹⁵ DO

Thomas Pöhlsen, Charge Collection in Si Detectors

CCE-curves measured with different setups

Drift Velocity

$$v_{dr} = \frac{\mu_0 E}{\left(1 + \left(\frac{\mu_0 E}{v_{sat}}\right)^{\beta}\right)^{1/\beta}}$$

$$v_{sat} = 9.814 \cdot 10^4$$
 m/s
 $\mu_0 = 0.1447$ m²/Vs
 $\beta = 1.1073$

(modified Jacoboni at 294 K)