

Impact of bulk generation current on operation of floating rings in silicon detectors

E. Verbitskaya, V. Eremin, N. Safonova*

Ioffe Physical-Technical Institute of Russian Academy of Sciences St. Petersburg, Russia

*also Saint-Petersburg Electrotechnical University "LETI", St. Petersburg, Russia

16 RD50 Workshop Barcelona, May 31 – June 2, 2010

Outline

- Motivation
- Experimental
- Results on potential distribution between the floating rings of VTS and I-V characteristics of interring gaps
- Physical model of potential distribution controlled by carrier injection
- Influence of detector parameters on potential distribution

Conclusions

Motivation

Current subjects of Ioffe team: specified at 15 RD50 workshop

- ✓ Strip detector performance at SLHC: very high fluences and enhanced bulk generated current → (14&15 RD50: Avalanche multiplication in CCE, segment isolation)
- ✓ Development of operational model for:
- current terminating structure (CTS, edgeless detectors) (13 RD50)
- voltage terminating structure (VTS)
- ✓ Noise performance of spectroscopic strip detectors (GSI, Darmstadt)

E. Verbitskaya et al., 16 RD50 Workshop, Barcelona, May 31-June 2, 2010

(16 RD50)

Motivation

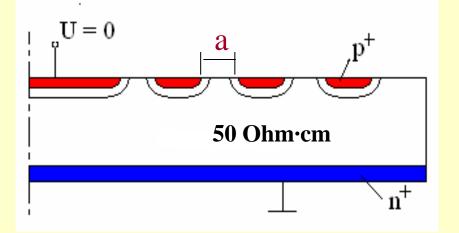
Goal: stabilization of I-V characteristics at high voltage operation: ✓ stabilization of ring potentials

 \checkmark reduction of electric field near the sensitive p⁺-n junction

Known methods: facets, doping (active edge), <u>floating rings</u> (VTS)

VTS: floating rings around pad electrode that extend towards chip periphery:

developed for


High V and power Si devices: diodes, thyristors

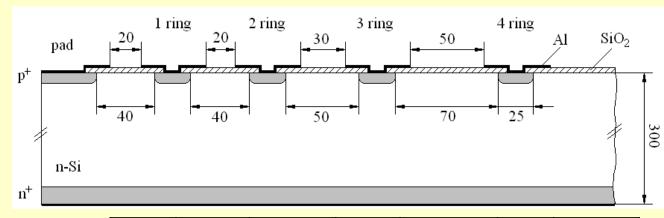
- low ρ (10–100) Ohm·cm;
- deep gradual p-n junction (tens µm);
- high current (mA)

<u>Detectors</u> – principal difference in:

- high ρ (1–20) Ohm·cm;
- shallow abrupt junction ($\leq 1 \mu m$);
- low current (nA/cm²/100 μ m)
- radiation hardness of VTS!?

Electrostatic model of potential distribution

U = 0 p^{+} 10 k h^{+}

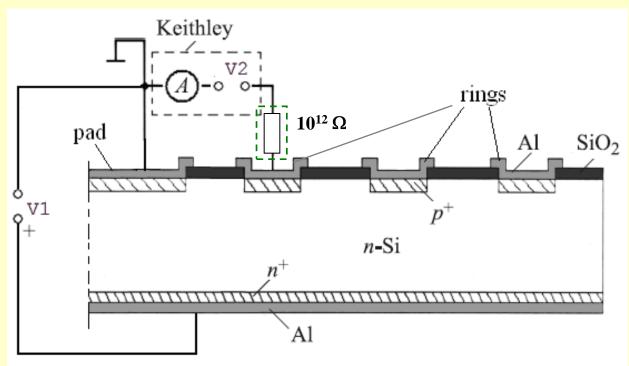

a – gap width

Low ρ

High p

At $V_{pad} = 0$ and $\phi_c = 0.6$ V: SCRs of the rings should be connected and potentials of the rings the same - **fails** - disagrees with experiment!

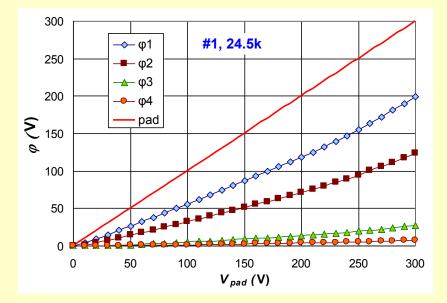
Our standard test structure: p⁺-n-n⁺ 4 floating rings

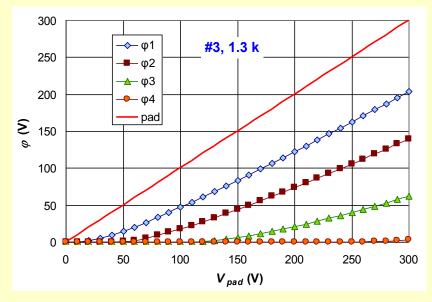

group	sample	number of rings	<i>d</i> (μm)	n-Si	$egin{array}{c} U_{fd} \ ({ m V}) \end{array}$	ρ (kΩ·cm)	
Ι	1	4	300	FZ Topsil	12	24.6	
	2	4	300	FZ Wacker	65	4.5	
	3	4	300	CZ Okmetik	230	1.3	
II	4	8	300	FZ Topsil	80	3.7	
	5	8	300	FZ Topsil	80	3.7	
	6	8	1000	FZ Topsil	160	20	
	7	8	1000	FZ Topsil	160	20	

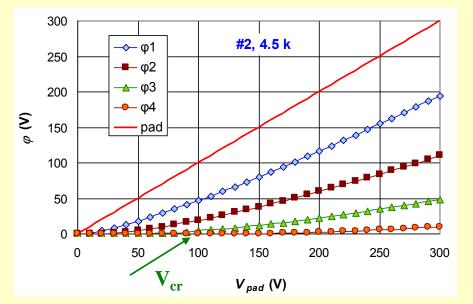
Experimental

Measurement:

potential of the rings

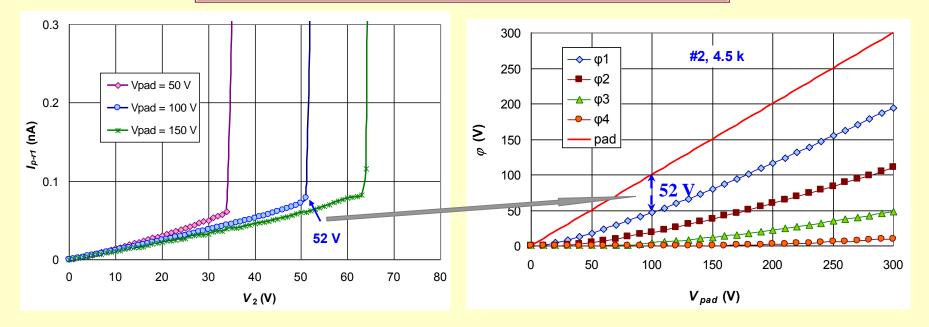

I-V characteristics of the gaps




Gaps: pad-ring, interring

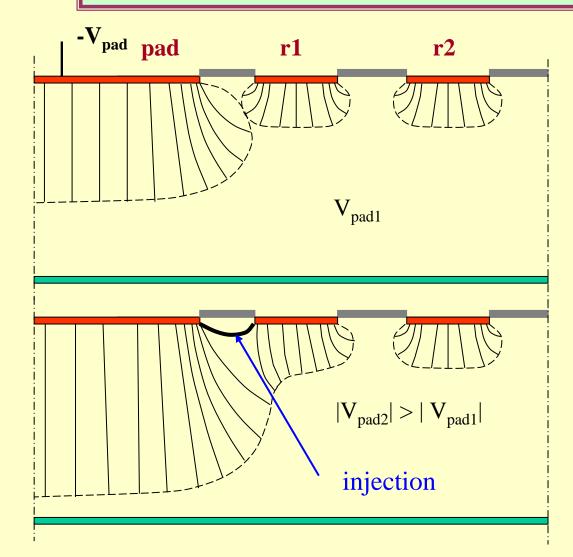
Potential distribution in VTS

different ρ

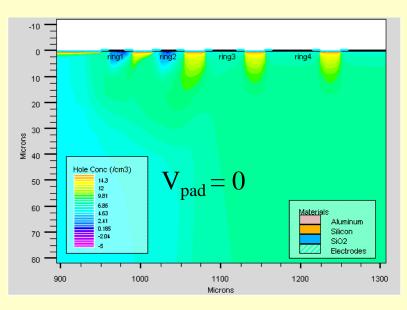


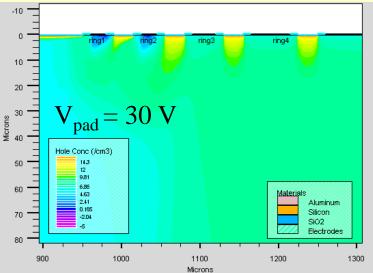
 φ starts to rise at $V_{pad} = V_{cr}$ $V_{cr} \uparrow as \rho \downarrow$

I-V characteristics of the gaps


Potentials at the rings

✓ Potential difference at the gap equals to the threshold voltage V_{th} at which injection starts →

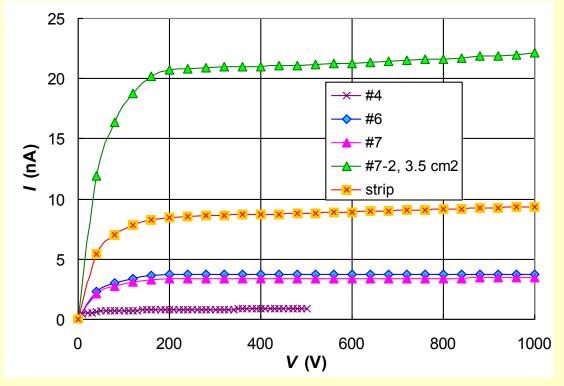

✓Potential distribution between the rings is governed by <u>injection current</u> in the gap (<u>forward biased junction</u> operated at high lateral field))


Injection model of potential distribution



Potential stabilization: hole transfer to the ring + hole injection in the gap **Criteria for potential** stabilization at the ring -✓ trajectory between the rings for hole injection from the ring with lower negative potential; ✓ low leakage in the gap: $I_{leak} < I_{gen}$ near the ring (individual for rings, less sensitive gap pad-ring maximum I_{gen} near pad; interface properties)

Distribution of holes in the gaps


As V_{pad} increases, holes are extracted inside the gaps

Needed for detailed description – Q at the interface, topology of rings

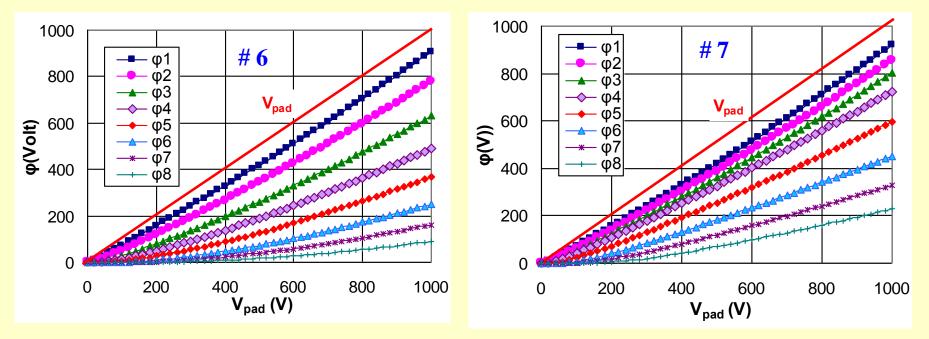
Detectors with 1 mm thickness: I-V characteristics

$$d = 1 \text{ mm}; \rho = 20 \text{ k}; V_{fd} = 160 \text{ V}; V_{max} = 1000 \text{ V}$$

VTS with 8 rings

4:
$$d = 300 \mu m;$$

I $\approx 1 nA$

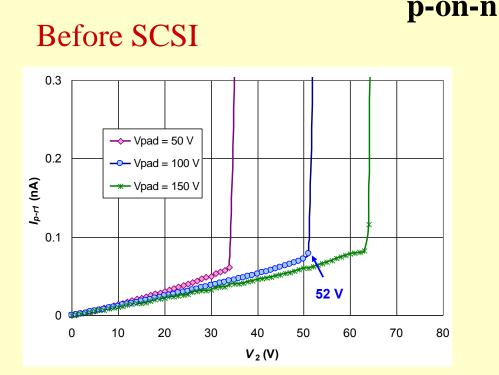

others: 1 mm ## 6, 7: I ≈ 3.5 nA

Bulk generation current proportional to detector thickness

Detectors with 1 mm thickness Potential distribution

$$d = 1 \text{ mm}; \rho = 20 \text{ k}; V_{fd} = 160 \text{ V}; V_{max} = 1000 \text{ V}$$

VTS with 8 rings



Detectors with 1 mm thickness: topology with 8 rings allows reduction of the electric field near sensitive p-n junction – main task! Distribution is controlled by VTS design

E. Verbitskaya et al., 16 RD50 Workshop, Barcelona, May 31-June 2, 2010

14

Predictions for irradiated detectors

High current (irradiation, illumination)
cannot change potentional distribution
key point for radiation hardness)

Beyond SCSI: Double peak electric field + active base -

♦ low field near p⁺,
 and <u>high F at n⁺</u>

holes are captured
 by deep levels
 and affect electric field
 distribution

Predictions for irradiated detectors

n-on-p

floating rings at n⁺ side The same mechanism of potential distribution via injection current in the gap at high and low radiation fluence

Difference: injection current of electrons, electrons are captured by deep levels and affect electric field distribution

Future studies

✓ various VTS design

✓ parameterization of potential

 development of engineering approach for calculation of potential distribution
 study of irradiated detectors

Conclusions

1. Potential stabilization is controlled by hole injection current in the gap (new model)

2. The factors that define potential distribution between floating rings are:

- low leakage in the gap (interface);
- Si resistivity: at lower ρ larger V_{pad} is needed for potential dividing;
- gap width a.

3. Model of potential stabilization due to injection current is valid for irradiated detectors and insensitive to resistivity.

4. Practical importance:

Pad and strip test detectors with 1 mm thickness and operational bias up to 1 kV processed → low dark current, lower electric field near sensitive p-n junction.

Acknowledgments

This work was made in the framework of RD50 collaboration and supported in part by:

- RF President Grant # SS-3306.2010.2
- Fundamental Program of Russian Academy of Sciences on collaboration with CERN

Thank you for attention!