

Forward-bias operation of FZ and MCz silicon detectors made with different geometries in view of their applications as radiation monitoring sensors

IFS

J. Mekki^{2,1}, M. Moll¹, M. Glaser¹

¹CERN, Geneva, Switzerland ²IES, University Montpellier II, France

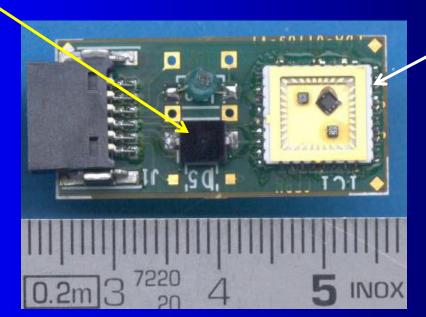
16th RD50 Worshop on Radiation hard semiconductor devices for very high luminosity colliders Barcelona, Spain 31 May – 02 June 2010

I. Introduction

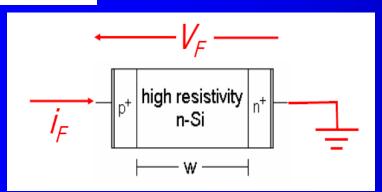
Radiation monitoring at the LHC experiment Summary of previous results

- II. Devices under study
- III. Measurements
- IV. Radiation response of custom made devices
- IV. Conclusion

Radiation Monitoring at the LHC Experiments

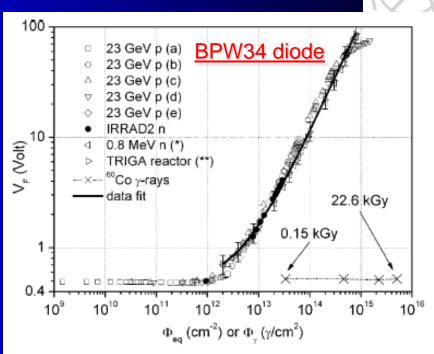


All equipments present in the complex radiation field of the LHC will be affected by radiation damage.


- <u>2 major issues:</u>
- Measure of the 1-MeV Φ_{eq}
- $\rightarrow 10^8 \le \Phi_{eq} \le 10^{14} 10^{15} n_{eq}/cm^2$ for LHC
- BPW34 Commercial silicon p-i-n diodes

Measure of the TID

2 types of RadFET: 250 nm oxyde thickness \rightarrow REM,UK 1600 nm oxyde thickness \rightarrow LAAS, France



TES Summary of previous results

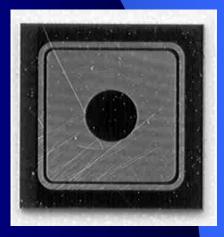
FORWARD BIAS

Fixed Readout Current $I_F \rightarrow V_F \propto \Phi_{eq}$ $I_F = 1$ mA with a short pulse duration

F. Ravotti et al., IEEE TNS, vol. 55, no. 4,pp. 2133-2140, 2008

Hadron sensitivity range from 2 10¹² to 4 10¹⁴ n_{eq}/cm².

How to measure Φ_{eq} < 2 10¹² n_{eq}/cm²?
 A solution exists → pre-irradiation


 With the intention to evaluate new options : Study of custom made devices **CERN**

Custom made devices

- Tested devices were made from n-type FZ and MCz silicon wafers.
- Geometry dependence on the detector's radiation response has been evaluated.
 - \rightarrow 2 different active areas: 2.5 2.5 mm² and 5 5 mm²
 - \rightarrow 2 different thicknesses: 300 µm and 1000 µm
- Manufactured by 2 different research institutes:
 - → Helsinki Institute of Physics (HIP), Finland
 - → Centro National de Microelectronica (CNM), Spain

Measurements

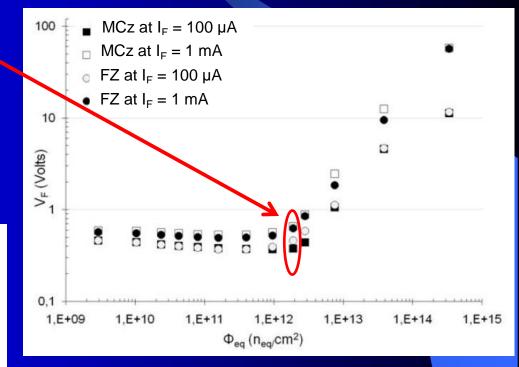
- Silicon detectors exposed to 24 GeV/c proton beam
- Fluences ranging from 3 10⁹ up to 4 10¹⁴ n_{eq}/cm²
- Measurements performed at room temperature
- Readout protocol: 8 currents
- ✓ $I_F = 10 \mu A$ ✓ $I_F = 100 \mu A$ ✓ $I_F = 1 m A$ ✓ $I_F = 5 m A$ ✓ $I_F = 10 m A$ ✓ $I_F = 10 m A$ ✓ $I_F = 15 m A$ ✓ $I_F = 20 m A$ ✓ $I_F = 25 m A$

Comparison between FZ and MCz silicon detectors

- Influence of the active area
- Influence of the thickness

Comparison between FZ and MCz Silicon detectors

• Active area : 2.5 2.5 mm²


• Thickness : 300 µm

Not sensitive up to 2 10¹² n_{eq}/cm²

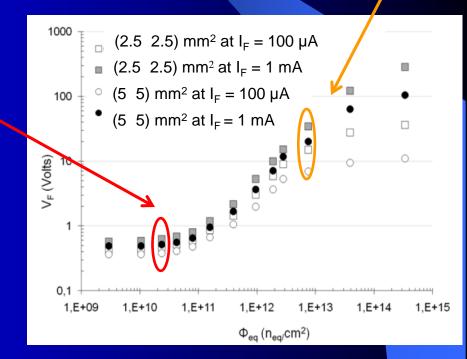
• Start to be sensitive at the same Φ_{eq} than the BPW34 diode. (300 µm)

1/c (MCz)	1/c (FZ)	1/c (BPW34FS)
9.1×10 ⁹	9.1×10 ⁹	1.7×10 ¹⁰
3.1×10 ⁹	4.2×10 ⁹	9.1×10 ⁹
2×10 ⁹	2.3×10 ⁹	6.7×10 ⁹
-	9.1×10 ⁹ 3.1×10 ⁹	9.1×10 ⁹ 9.1×10 ⁹ 3.1×10 ⁹ 4.2×10 ⁹

 $\Delta V = c \times \phi$

Sensitivity to radiation damage is on the same order of magnitude

Influence of the active area



Material: Float Zone

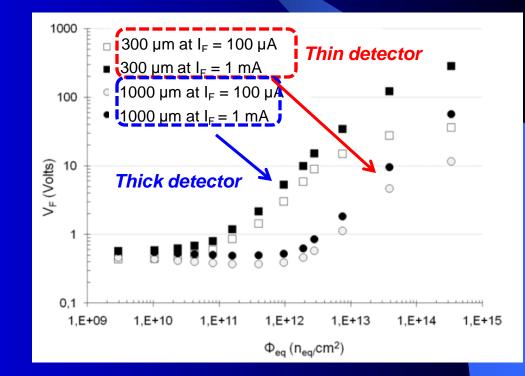
- Thickness : 1000 μm
- Manufacturer: CNM
- Investigated active areas: (5 5) mm²
 and (2.5 2.5) mm²
- For both detectors :
- Sensitivity starts at $\Phi_{eq} \approx 2 \ 10^{10} n_{eq}/cm^2$

	$\Delta V_F = c \times \phi_{eq}$	
IF	1/c ((2.5×2.5) mm ²)	1/c ((5×5) mm ²)
100 μΑ	3.1×10 ⁸	5.6×10 ⁸
1 mA	1.9×10 ⁸	2.8×10 ⁸
5 mA	1.3×10 ⁸	2.1×10 ⁸

- Saturation observed at Φ_{eq} ≈ 8 10¹² n_{eq}/cm²
 Detector becomes ohmic-like ¹
 - ¹J. Mekki et al., will be published in IEEE TNS, August 2010

 When the active area is reduced by 4 sensitivity is increased by 1.5

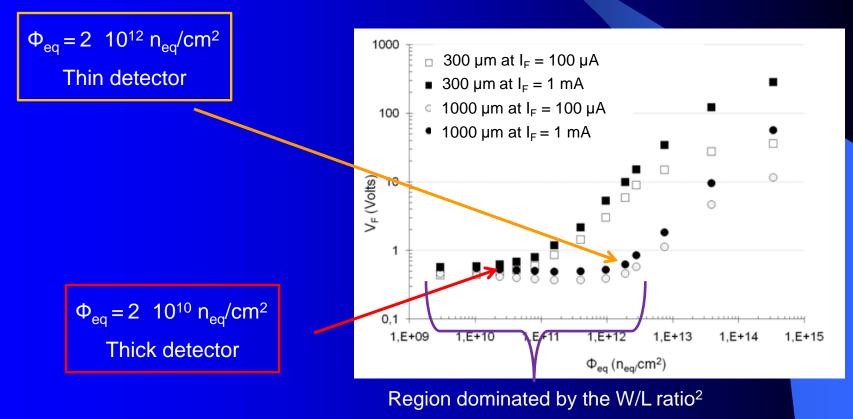
Sensitivity to radiation damage is on the same order of magnitude

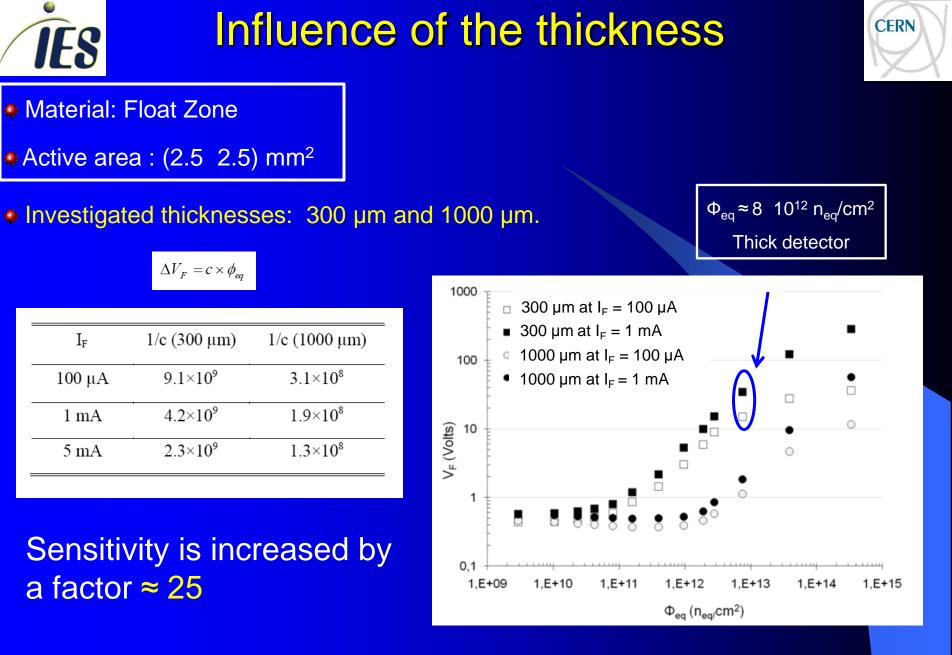

Influence of the thickness

Material: Float Zone

• Active area : (2.5 2.5) mm²

Investigated thicknesses: 300 μm and 1000 μm.


Influence of the thickness


Material: Float Zone

• Active area : (2.5 2.5) mm²

Investigated thicknesses: 300 μm and 1000 μm.

² J. M. Swartz *et al., J. Appl. Phys., vol.* 37, no. 2,pp. 745-755, 1966

Conclusion

Several devices have been investigated

Outcome:

• No significant difference between MCz and FZ silicon detectors. Main parameter: Thickness

- Thicker devices start to be sensitive at lower Φ_{eq} .
- Sensitivity is ≈ 25 times greater than for thin detectors.

Thick silicon detectors should be considered for monitoring low LHC/SLHC fluences

Limited to their utilization at low fluences.

Solution for monitoring full LHC fluences: Thick and thin detectors on the same board.

Thank you for your attention