

Joint Laboratory for Characterisation of Defect Centres in Semi-Insulating Materials

High-resolution photoinduced transient spectroscopy of defect centres in epitaxial silicon irradiated with high proton fluences

Paweł Kamiński ¹, Roman Kozłowski ¹, Jarosław Żelazko ¹, and Eckhart Fretwurst ²

¹ Institute of Electronic Materials Technology, ² Institute of Experimental Physics, Hamburg University

16th RD 50 Workshop - Barcelona, 31 May - 2 June 2010

Outline

- Samples pad detectors with active layer of epitaxial silicon irradiated with 24 GeV/c protons; after removing p⁺ layer planar ohmic contacts made on the surface of *n*-type epilayer
- Details of HRPITS measurements
- HRPITS images of spectral fringes for radiation defects in standard and oxygenated epitaxial layers – effect of increasing the proton fluence from 1.0x10¹⁶ to 1.7x10¹⁶cm⁻² on the properties and concentrations of defect centers in the as-irradiated and annealed material
- Changes in the concentrations of selected defect centers with increasing annealing temperature from 80 to 240 °C
- Conclusions

Samples

- Epitaxial detectors fabricated by CiS, Erfurt (Germany) Process: 261636-13 CiS standard (label – EPI ST 150) Process: 261636-9 CiS oxygenated (label – EPI DO 150)
- Epitaxial layers: ITME Si epi., <100>, *n*-type, 500 Ωcm, ~ 150 μm,
 [O] = 4.5 10¹⁶ cm⁻³ (EPI ST 150)
 [O] = 1.4 ×10¹⁷ cm⁻³ (EPI DO 150)
- 24 GeV/c proton irradiation: CERN PS source Fluences: 1.0x10¹⁶ and 1.7x10¹⁶ cm⁻²

Charge collection efficiency

Jörn Lange et al. 13th RD50 Workshop, CERN, November 2008

Details of HRPITS measurements

- Temperature range: 30 300 K, $\Delta T = 2$ K
- Excitation source: 5 mW, 650 nm laser diode (hv = 1.908 eV)
- Excitation pulse parameters: Period 250 ms, Width 50 ms
- Photon flux: 1.3x10¹⁷ cm⁻²s⁻¹
- BIAS: 20 V
- Gain: 1x10⁶ 1x10⁷ V/A
- AVG: 250 waveforms
- Analysis of photocurrent relaxation waveforms:
 - 2D correlation procedure (multi-window approach) → images of correlation spectral fringes for radiation defect centres
 - 2D inverse Laplace transformation algorithm → images of Laplace fringes for radiation defect centres

Temperature dependence of mobility lifetime product

TA3 TS4 T10 TS6 TA2 **Defect structure of ST Si-epitaxial** TA4 TS11 T9 TC3 TA5 TA1 TB1 TA6 layer after irradiation with a fluence TA8 4.5 of 1x10¹⁶ cm⁻² 0.8 0.6 Image of correlation spectral fringes $\log(e_T [s^{-1}])$ Amplitude [a.u.] 3.5 0.4 3 0.2 2.5 0 Concentrations of defect centers 2 -0.2 1.5 Parameters of defect centers -0.4 50 100 150 200 250 300 (14 traps) Temperature [K] ST_1.0e16_as-irradiated 10¹⁸ 600 ST epi 1e16 as-irradiated ST epi 1e16 as-irradiated TA8 500 Concentration (cm^{.3}) 400 TS6 T10 TA5 TC3 TS4 TA6 TA10 () або аво 200 Т9 TA8 TS11 TA4 10¹⁶ TA3 TA3 TB1 100 TA2 TA1 0 TA1 10¹⁵ 10⁵ 10⁶ 10^{8} 10⁴ 10^{7} 30 65 73 109 170 226 255 260 298 315 325 400 410 480 Activation Energy (meV) Pre-exponential factor A (K⁻²s⁻¹)

Si epi 150 µm as-maciated with a proton indence of 1.0x10 em .					
Trap label	E_a^* (meV)	$A^* (K^{-2}s^{-1})$	Concentration (cm ⁻³)	Tentative identification	
TA1	30±5	3.2×10^4	2.0×10^{15}	shallow donors	
TA2	65±5	1.9×10^5	3.8×10^{15}	shallow donors	
TB1	73±5	3.6×10^4	4.9×10^{15}	I aggregates (I ₃)	
TA3	109±5	$1.2 \mathrm{x} 10^5$	7.6×10^{15}	I aggregates (I ₄)	
TA4	170±5	$1.0 \mathrm{x} 10^{6}$	1.2×10^{16}	VO (-/0)	
TS11	226±10	7.5×10^{6}	1.6×10^{16}	V ₂ O (2-/-)	
T9	255±10	2.6×10^{6}	2.7×10^{16}	IO ₂	
TC3	260±10	4.7×10^5	3.2×10^{16}	V ₂ (2-/-)	
TS4	298±10	1.5×10^{6}	3.7×10^{16}	new, unidentified, vacancy or self-interstitial aggregate ?	
T10	315±10	2.5x10 ⁵	$4.7 \mathrm{x} 10^{16}$	V_3 (2-/-), (110) planar configuration, $C_{2\nu}$ symmetry, $E_c - 0.28$ eV [1]	
TA5	325±10	$1.4 \mathrm{x} 10^{6}$	3.9×10^{16}	new, unidentified, vacancy aggregate V ₄ ?	
TS6	400±20	$1.0 \mathrm{x} 10^7$	5.2×10^{16}	new, unidentified, vacancy or self-interstitial aggregate ?	
TA6	410±20	4.4×10^{6}	4.0×10^{16}	V ₂ (-/0)	
TA8	480±20	$4.0 \mathrm{x} 10^7$	$2.4 \mathrm{x} 10^{16}$	V_3 (-/0) , (110) planar configuration, $C_{2\nu}$ symmetry, $E_c - 0.5 \text{ eV} [1]$	

Parameters of defect centers obtained from the HRPITS studies for ST Si epi 150 μ m as-irradiated with a proton fluence of 1.0×10^{16} cm⁻².

^{*} E_a and A - the activation energy and pre-exponential factor in the Arrhenius formula $e_T = AT^2 exp(-E_{\alpha}/kT)$

[1] – Markevich *et al.* Physical Review B **80**, 235207 (2009)

Defect structure of DO Si-epitaxial layer after irradiation with a fluence of 1x10¹⁶ cm⁻²

TC1

TA1

4.5

TC2

TA4 T7

TC3 TA5 T10

1.2

TA6

TA8

Parameters of defect centers obtained from the HRPITS studies for DO Si epi 150 μ m as-irradiated with a proton fluence of 1.0×10^{16} cm⁻².

Trap label	E_a^* (meV)	$A^* (K^{-2}s^{-1})$	Concentration (cm ⁻³)	Tentative identification
TA1	30±5	3.2×10^4	1.8×10^{15}	shallow donors
TC1	35±5	$1.0 \mathrm{x} 10^4$	$1.5 \mathrm{x} 10^{15}$	shallow donors
TC2	95±5	2.8×10^5	2.5×10^{16}	V_3 fourfold coordinated D_3 symmetry [1]
TA4	190±5	2.4×10^{6}	9.1×10^{15}	VO (-/0)
T7	210±5	4.0×10^5	1.3×10^{16}	V ₂ (+/0)
TC3	260±10	4.7×10^5	2.5×10^{16}	V ₂ (2-/-)
T10	315±10	2.8×10^5	3.2×10^{16}	V_3 (2-/-), (110) planar configuration, $C_{2\nu}$ symmetry, $E_c - 0.28$ eV [1]
TA5	325±10	$1.4 \mathrm{x} 10^{6}$	2.6×10^{16}	new, unidentified, vacancy aggregate V ₄ ?
TA6	410±10	2.5×10^{6}	4.9×10^{16}	V ₂ (-/0)
TA7	460±10	1.6×10^{6}	1.0×10^{16}	E5, vacancy aggregate V_4 ?
TA8	480±10	$1.3 \mathrm{x} 10^7$	3.2×10^{16}	V_3 (-/0) , (110) planar configuration, $C_{2\nu}$ symmetry, $E_c - 0.5$ eV [1]

^{*} E_a and A - the activation energy and pre-exponential factor in the Arrhenius formula $e_T = AT^2 exp(-E_a/kT)$

[1] – Markevich *et al.* Physical Review B **80**, 235207 (2009)

Defect structure of ST Si-epitaxial layer after irradiation with a fluence of 1.7x10¹⁶ cm⁻²

TS9

TS7 TS8

4.5

TS10 TA4

TS4

T7 TS5

TA5 T10

TS6

TA6

TA8

150 µm as-irradiated with a proton fluence of 1.7x10° cm ⁻ .					
Trap label	E_a^* (meV)	$A^* (K^{-2}s^{-1})$	Concentration (cm ⁻³)	Tentative identification	
TS7	20±5	$1.3 \text{x} 10^4$	1.1×10^{15}	shallow donors	
TS8	30±5	3.8×10^3	3.0×10^{15}	shallow donors	
TS9	90±5	$4.4 \text{x} 10^4$	6.9×10^{15}	I aggregates (I ₃)	
TS10	95±5	2.9×10^5	1.1×10^{16}	V_3 fourfold coordinated D_3 symmetry [1]	
TA4	190±10	2.3×10^{6}	1.2×10^{16}	VO (-/0)	
T7	210±10	$4.0 \mathrm{x} 10^5$	1.5×10^{16}	V ₂ (+/0)	
TS5	270±10	$1.8 \mathrm{x} 10^{6}$	2.6×10^{16}	IO_2	
TS4	300±10	1.5×10^{6}	3.9×10^{16}	new, unidentified, vacancy or self-interstitial aggregate ?	
T10	315±10	2.5x10 ⁵	5.8x10 ¹⁶	V_3 (2-/-) , (110) planar configuration, C_{2v} symmetry, $E_c - 0.28$ eV [1]	
TA5	325±10	$1.4 \mathrm{x} 10^{6}$	5.0×10^{16}	new, unidentified, vacancy aggregate V ₄ ?	
TS6	400±10	6.1×10^{6}	1.8×10^{16}	new, unidentified, vacancy or self-interstitial aggregate ?	
TA6	410±15	2.5×10^{6}	1.3×10^{16}	V ₂ (-/0)	
TA8	480±10	1.3x10 ⁷	1.5x10 ¹⁶	V_3 (-/0) , (110) planar configuration, $C_{2\nu}$ symmetry, $E_c - 0.5$ eV [1]	

Parameters of defect centers obtained from the HRPITS studies for ST Si epi 150 μ m as-irradiated with a proton fluence of 1.7×10^{16} cm⁻².

* E_a and A – the activation energy and pre-exponential factor in the Arrhenius formula $e_T = AT^2 exp(-E_a/kT)$

[1] – Markevich *et al.* Physical Review B **80**, 235207 (2009)

150 µm as-madiated with a proton indence of 1.7x10° cm ⁻ .				
Trap label	E_a^* (meV)	$A^* (K^{-2}s^{-1})$	Concentration (cm ⁻³)	Tentative identification
TC1	30±5	$1.1 \text{x} 10^4$	$2.3 \mathrm{x} 10^{15}$	shallow donors – STD (H)
TC2	95±5	2.7×10^5	$2.0 \mathrm{x} 10^{16}$	V_3 fourfold coordinated D_3 symmetry [1]
TA4	190±5	2.4×10^{6}	1.3×10^{16}	VO (-/0)
T7	210±5	4.0×10^5	1.6×10^{16}	V ₂ (+/0)
TC3	260±10	$4.7 \mathrm{x} 10^5$	2.8×10^{16}	V ₂ (2-/-)
T10	315±10	2.8x10 ⁵	4.5x10 ¹⁶	V_3 (2-/-) , (110) planar configuration, C_{2v} symmetry, $E_c - 0.28$ eV [1]
TA5	325±10	$1.4 \mathrm{x} 10^{6}$	3.3×10^{16}	new, unidentified, vacancy aggregate V ₄ ?
TA6	410±10	2.5×10^{6}	5.5×10^{16}	V ₂ (-/0)
TA7	460±10	1.6×10^{6}	3.2×10^{14}	E5, vacancy aggregate V ₄ ?
TA8	480±10	1.3x10 ⁷	3.5x10 ¹⁶	V_3 (-/0) , (110) planar configuration, $C_{2\nu}$ symmetry, $E_c - 0.5$ eV [1]

Parameters of defect centers obtained from the HRPITS studies for DO Si epi 150 μ m as-irradiated with a proton fluence of 1.7×10^{16} cm⁻².

^{*} E_a and A - the activation energy and pre-exponential factor in the Arrhenius formula $e_T = AT^2 exp(-E_a/kT)$

[1] – Markevich et al. Physical Review B 80, 235207 (2009)

ST epilayer, as-irradiated

Changes in the radiation defect centers concentrations with increasing the proton fluence from **1.0x10¹⁶** to **1.7x10¹⁶** cm⁻²

DO epilayers, as-irradiated

Changes in the radiation defect centers concentrations with increasing the proton fluence from 1.0×10^{16} to 1.7×10^{16} cm⁻²

ST and DO epilayers

Changes in the concentrations of radiation defect centers with increasing the annealing temperature

Conclusions (1)

High-resolution photoinduced transient spectroscopy (HRPITS) has been used to imaging defect structure of *n*-type epitaxial layers being the active layers of pad detectors irradiated with 24 GeV/c protons. The effect of increasing fluence from 1.0x10¹⁶ cm⁻² to 1.7x10¹⁶ cm⁻² on parameters and concentrations of radiation defect centers has been studied.

In standard epitaxial layers irradiated with the lower proton fluence, the activation energy of the predominant defect center was found to be 400 meV. This center, the concentration of which was 5.2x10¹⁶ cm⁻³, is presumably related to a vacancy aggregate. The concentrations of other radiation centers with activation energies 255, 260, 300, 315, 325, 410, and 480 eV ranged from 2.4x10¹⁶ to 4.7x10¹⁶ cm⁻³.

In standard epitaxial layers irradiated with the higher proton fluence, the activation energy of the predominant defect center was found to be 315 meV. This center, whose concentration was 5.8x10¹⁶ cm⁻³, is tentatively assigned to a trivacancy. The concentrations of other radiation centers with activation energies 270, 300, and 325 eV, ranged from 2.6x10¹⁶ to 5.0x10¹⁶ cm⁻³.

Conclusions (2)

In oxygenated epitaxial layers with the lower proton fluence, the activation energy of the predominant defect center was found to be 410 meV. This center, the concentration of which was 4.9x10¹⁶ cm⁻³, is presumably related to a divacancy V₂-^{/0}. The concentrations of the other radiation centers with activation energies 260, 315, 325, and 480 eV, ranged from 2.5x10¹⁶ to 3.2x10¹⁶ cm⁻³.

In oxygenated epitaxial layers with the higher proton fluence, the activation energy of the predominant defect center was found to be 410 meV. This center, the concentration of which was 5.5x10¹⁶ cm⁻³, is presumably related to a divacancy V₂-^{/0}. The concentrations of the other radiation centers with activation energies 260, 315, 325, and 480 eV, ranged from 2.8x10¹⁶ to 4.5x10¹⁶ cm⁻³.

It was found that after 1-h annealing at 240 °C the activation energy of the predominant defect center is 575 meV. In the standard epitaxial layers irradiated with proton fluences 1.0x10¹⁶ cm⁻³ and 1.7x10¹⁶ cm⁻² the concentrations of this center after the annealing were 9.2x10¹⁶ and 8.0x10¹⁶ cm⁻³, respectively.

In the oxygenated epitaxial layers irradiated with proton fluences 1.0x10¹⁶ cm⁻³ and 1.7x10¹⁶ cm⁻², the concentrations of the predominant 575-meV center after the annealing were 5.4x10¹⁶ and 7.0x10¹⁶ cm⁻³, respectively.

Acknowledgement

This work was carried out within the framework of the RD 50 project with financial support of the Polish Ministry of Science and Higher Education under grant No. DPN/N185/CERN/2009.

Model of Photocurrent Relaxation Waveforms

 $i_m(t, T) = I_m(\lambda, T) \exp(-e_{Tm}t);$ $I_m(\lambda, T) = n_{tom}(T) e_{Tm}(T) \mu_T(T) \tau_T(T) C (\lambda, T) qE$ $i(t, T) = \sum_{m=1}^{M} I_k(\lambda, T) \exp(-e_{Tm}t);$

$$e_{Tm} = A_m T^2 \exp(-E_{am} / k_B T)$$
$$A_{mn} = \gamma_n \sigma_{mn} ; A_{mp} = \gamma_p \sigma_{mp}$$

For Si: $\gamma_n = 1.07 \text{ x } 10^{21} \text{ cm}^{-2} \text{K}^{-2} \text{s}^{-1}$; $\gamma_p = 2.64 \text{ x } 10^{21} \text{ cm}^{-2} \text{K}^{-2} \text{s}^{-1}$

$$N_{T} = \frac{U_{cal}}{qBe_{T}lE}$$

$$B = \exp \langle t_{1}e_{T} \rangle \exp \langle t_{2}e_{T} \rangle$$

$$t_{1} = 1,23/e_{T}; t_{2} = 3t_{1}$$

$$U_{cal} = \frac{S \langle t \rangle \langle t \rangle \langle t \rangle}{\mu \tau}$$

Atomic structures of $V_3(C_{2v})$ - (a) and $V_3(D_3)$ – (b)

MARKEVICH et al. PHYSICAL REVIEW B 80, 235207, (2009)