

Preliminary results from 3D CMS Pixel Detectors

<u>Ozhan Koybasi¹</u>, E. Alagoz¹, K. Arndt¹, D. Bortoletto¹, I. Shipsey¹, G. Bolla¹, T. E. Hansen², A. Kok², T. A. Hansen², N. Lietaer², G. U. Jensen², A.Summanwar², R. Riviera³, M. Turqueti³, L. Uplegger³, and S. W. L. Kwan³

¹Physics Department, Purdue University, West Lafayette, IN 47907-2036 USA ²SINTEF, SINTEF MiNaLab, Blindern, 0314 Oslo, Norway ³Fermilab, Batavia, IL 60510-5011 USA

16th RD50 Workshop ,Barcelona, June 2nd , 2010

3D Detectors - CMS Pixel Layouts

- First fabricated at Stanford Nanofabrication facility in 1997
- As a part of "3D Collaboration", fabrication transferred to SINTEF for small and medium scale production
- •Two different 3D CMS layouts:
 - 4 readout electrodes per pixel (4E)
 - 2 readout electrodes per pixel (2E)

2E Configuration

- More r > F > L
- Larger active volume

Lower noise

Less trapping

Wafer Layout

CMS

- p-type wafers with resistivity $> 10 \ k\Omega.cm$
- Two different wafer thicknesses:
 - $B5:280\mu m$ thick
 - B2-16 : 200 μm thick
- Include ATLAS, CMS, and MediPix devices

Fabrication at SINTEF

- p-spray isolation : 6x10¹²cm⁻², 60keV, through a 60nm oxide. Annealed at 900°C for 30 minutes
- Wafer bonding by direct fusion bonding
- Deep Reactive ion etching (DRIE) & polysilicon filling and doping of electrodes
 - n-type electrode etching & filling (diameter of 14 $\mu m)$
 - 300nm thermal oxide barrier protection
 - p-type electrode and active edge etching & filling (5 μ m active edge)
- Metal layer deposition & patterning
- Passivation layer of 0.5 μm oxide and 0.25 μm nitride deposition by PECVD $\,$ & patterning

5

 Support wafer made wire-bonding challenging (especially high voltage

- Cooling done by a chiller
- Sensor temperature measurement: an RTD placed on the carbon fiber (cooling tubes side): $\Delta T = 6$ C

Ceramic

plate

Detector	l (@40V) [μA] / Chip	l(@40V) [nA] / Pixel	Breakdown Voltage [V]
2E-WB5-2	0.7	0.35	120
2E-WB2-16-6	5	2.5	120
4E-WB5-8	2	1	100
4E-WB2-16-5	10	5	100

Noise Tests

Beam Test Results: 2E_WB5_2

- ADC to electron conversion: Vcal* [DAC] = ADC x gain - offset Charge (e-) = Vcal x 65.5 - 410
 - * 1 Vcal [DAC] = 65.5 electrons

 T ≈ 11 °C on carbon fiber (estimated to be 6 °C higher on the sensor)

Beam Test Results: 2E_WB5_2

- Each point is charge distribution mean
- Most probable value to be determined after re-doing gain calibration
- Electron equivalence of threshold to be determined with CAPTAN system

Beam Test Results: 2E_WB2-16_6

ADC distribution

Beam spot on 3D

Summary and Future plans

- Bump-bonded 3D CMS pixel sensors with 2E and 4E configurations assembled into plaquettes and characterized.
 - Good I-V behavior except one 2E sensor
 - High noise : ~ 450 electrons for 4E sensors and 250-300 electrons for 2E sensors
 - -Good bump-bond quality
- Some sensors tested at FNAL with 120 GeV protons
 - Bias and threshold scans of charge performed. Gain calibration to be re-done and equivalence of threshold to be determined with CAPTAN system at Purdue
 - Results for 2E sensors are promising while 4E sensors failed.
- More sensors to be studied more thoroughly with test beam at FNAL and radioactive source at Purdue before and after irradiation

BACKUP SLIDES

Correlation between planes

0 [1

Sensor : 2E_WB5_2

بتا ٥

1 7 -

Sensor : 2E_WB2-16_6

5.099

4.09

4.808 3.768

5.063

