

Irradiation and annealing study of 3D p-type strip detectors

- CNM double-sided 3D
- Measurements pre-irradiation
 - Bulk capacitance
 - Leakage current
 - Interstrip capacitance
 - Interstrip resistance
- Post-irradiation and annealing
- Future 3D work and other activities

<u>Celeste Fleta</u>, Manuel Lozano, Giulio Pellegrini (IMB-CNM, Barcelona)

Double-sided 3D at CNM

- Columns etched from opposite sides of substrate and don't pass through full thickness
- All fabrication done in-house
- ICP is a <u>reliable and repeatable</u> process (many successful runs)

Electrode fabrication:

- 1. ICP etching of the holes: Bosch process, ALCATEL 601-E
- 2. Holes partially filled with 3 µm LPCVD poly
- 3. Doping with P or B
- 4. Holes passivated with TEOS SiO₂

Hole aspect ratio 25:1 10µm diameter, 250µm deep P- and N-type substrates, 285µm thick

3D p-type strip detectors

Devices: » n⁺ strips » p⁻ bulk » p⁺ back contact 50 strips DC coupled 50 electrodes/strip 4mm long strips

Yield for strip detectors in 2008 production = 86%

 $Yield = \frac{tested \ good \ sensors}{wafers \ started \ \times \ sensors \ per \ wafer}$

Leakage current

Before irradiation, T = 20°C

- Backside biased, strip and guard ring grounded
- Can see VFD ~ 40V
- 2 6 nA/strip (40 120 pA/column)
- Only 2 detectors, of 19 tested, bad (not shown)
 - Breakdown at less than 5V (catastrophic defect?)
 - All others work far beyond full depletion

P-Type DS3D strip detectors

Bulk capacitance

Simulation by D. Pennicard, Glasgow

Capacitance between strip and backside, neighbours also biased, 20°C, 10 kHz

C = 3 – 7 pF/strip depending on sensor

Interstrip resistance

Use two K2410 Sourcemeters:

- 1. Bias in backside, guard ring to ground
- 2. Sense test strip, varying voltage, keeping neighbours at ground

Rint = 2/slope

Non – irradiated I-V interstrip at 20°C

Vbias (V)	Rint (GΩ)
5	28
15	50
20	52
30	99
40	94

Good P-stop isolation before irradiation

Interstrip capacitance

Centre Nacional de Microelectrònica

Use K2410 Sourcemeter and HP4284A LCR meter:

- K2410: Bias in backside, guard ring to ground
- 4284A: test strip HIGH, neighbours LOW

3 probes + guard ring

[•] Test Cint as function of frequency

- Values converge for higher frequencies
 - Will use 1 MHz for tests

Irradiations (with thanks to Karlsruhe, Freiburg)

- N- and P-bulk short strip detectors were irradiated at Karlsruhe with 26 MeV protons.
 - Irradiated cold, not biased
- No intentional annealing
 - Max 5 days room temperature
- Distributed to test in Glasgow, Freiburg, CNM.

26 MeV protons scale to 1 MeV neutron equivalent fluence with a hardness factor of 1.85

Annealing

- P-type strip detector irradiated to 10¹⁶ neq/cm²
- Accelerated annealing at 80°C
 - Acceleration factor of 7400 for the reverse annealing with respect to RT
- All tests at -10°C in probe station

Leakage current after irradiation

Irradiated p-type, no annealing, -10°C

- Leakage current increases with irradiation dose
- Difficult to estimate damage constant alpha (difficult to calculate Vdep)

Leakage current vs annealing time

Two competing effects in annealing curves:

- Annealing of leakage current at low V
- Charge multiplication at V ~ 200V. More pronunced and earlier for longer annealing times

Bulk capacitance vs fluence

Irradiated p-type sensors, no annealing, -10°C

Lateral depletion voltage estimated from log-log plot, error bars take into account choice of points for lines fitting

Not possible to distinguish full depletion in plots

Bulk capacitance vs annealing time

Vlat increases with annealing time at 80°C

- Vlat (0 min) ~ 148V, Vlat (480 min) ~ 170V

Interstrip capacitance vs fluence

Irradiated p-type sensors, no annealing, -10°C, 1MHz

- Cint saturates at lower voltages for irradiated sensors
- Cint seems to decrease with initial irradiation, then increase again with dose.
 - Might just be difference between sensors (one for each dose only)

Interstrip capacitance vs annealing time

Interstrip capacitance, -10°C, 1 MHz, **10¹⁶ neq/cm²**

Interstrip capacitance changes very little with annealing time at 80°C. More likely due to strip to strip variation than annealing effect

Interstrip resistance vs fluence

Irradiated p-type sensors, no annealing, -10°C

- Interstrip current too low (pA) to obtain Rint of non-irradiated sensor at -10°C (~100 GΩ at 20°C)
- Measured resistance decreases with irradiation dose as surface isolation decreases
- P-stop works well even for highest irradiation
 - Rint >100 M Ω for 10¹⁶ neq/cm²

Interstrip resistance, -10°C, **10¹⁶ neq/cm²**

- 100V: interstrip resistance increases with time as substrate becomes more p-type and compensates negative charge in surface
- 150 V: Rint measured decreases for t > 15 min \rightarrow charge multiplication

N-type detector (preliminary)

- 1E16 neq/cm2
- Multiplication behaviour similar to p-type sensor
 - Starts at higher voltages: ~200V for ptype, ~300V for ntype

C. Fleta, 16th RD50 Workshop, 02/06/2010

Conclusions

- I have presented an irradiation and annealing study of 3D P-type strip sensors from CNM irradiated with 26 MeV protons up to 1E16 neq/cm2
- Depletion voltage increases with irradiation dose and annealing time. V(lat depl) lower than 150 V for 1E16 without annealing
- Leakage current increases with dose, shows typical annealing behaviour for low voltages. Charge multiplication appears at higher voltages, earlier for longer annealing times
- Strip isolation decreases with dose, p-stop works well even for higher irradiation
- Multiplication effect also seen in annealing curves of interstrip resistance
- Interstrip capacitance doesn't change much with irradiation or annealing
- Annealing study of n-type sensor irradiated to 1E16 neq/cm2 started: Multiplication observed but at higher voltages than p-type.

Future 3D Work

- New run of 3D-Medipix3, standard (2 cm²) and quad area (16 cm²). Collaboration with Diamond Light Source and Glasgow Uni (1)
- Irradiation and test beams with Medipix (Timepix) detectors for LHCb VELO upgrade.
- ATLAS pixels FE-I3 and new FE-I4 fabrication, irradiation and test beam. For the IBL, in the framework of the ATLAS 3D Collaboration (http://test-3dsensor.web.cern.ch/test-3dsensor/). (2)
- Design and fabrication of CMS pixels: single chips and 8x2 module. In collaboration with PSI. (3)
- Design and fabrication of 3D strip detectors for TOTEM (CERN) (4)

Other Activities

• Full production/testing chain at Barcelona

250 300 Bias Voltage (V)

- Sensor production
- Sensor/Front-end chip integration (bumpbonding to wirebonding)
- Device characterization

I. Leakage Current (FE-I3) Current (uA) 09 09

A19 Std (1050um) - run 4750

BCN CNM PL 04 - run 5097

ATLAS

100

50

50

40

30

20

10

0

150

200

