

Acceleration on Ast Gemini

Jan-Niclas Grue atory, Imperial College

HAPP

e16@imperial.ac.uk,

Imperial College London

Imperial College London

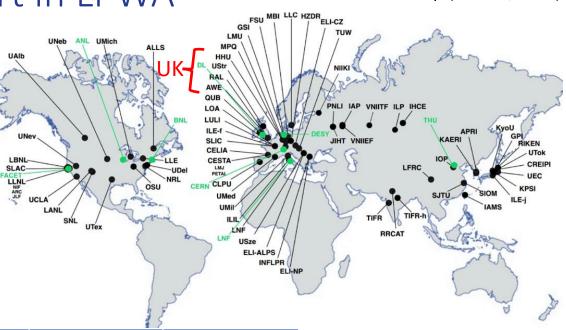
Michael Backhouse Elias Gerstmayr Rob Shalloo Stuart Mangles Savio Rozario Matthew Streeter Jonathan Wood Zulfikar Najmudin

Imperial College London Central Laser Facility Nicolas Bourgeois Rajeev Pattahil

DESY Kristjan Poder

Queen's University Belfast Thomas Audet

Instituto Superior Técnico Nelson Lopes



From: UK roadmap (PWASC, 2019)

The state of the art in LPWA

Advance accelerator concept strategies/road maps:

- *PWASC* in the UK (see right bottom \rightarrow)
- EuPRAXIA Conceptual Design Report (Europe)
- Advanced Accelerator Development Strategy Report (US)

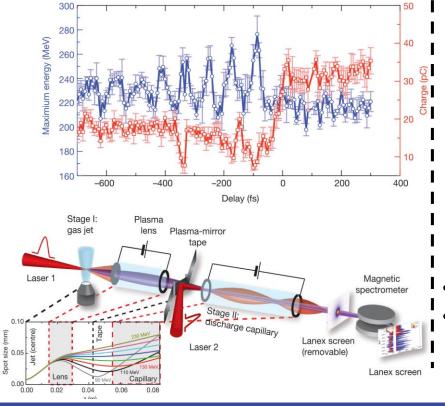
	E [GeV]	ΔΕ/Ε [%]	Q [pC]	$arepsilon_n$ [mm mrad]	f [Hz]	
FLASHForward	0.4-1.25		50-800	1-3	$4 \cdot 10^4 - 3 \cdot 10^6$	
SPARC_LAB	0.03-0.15	0.1-0.2	20-1000	1-5	10	Conceptual Design Concept (2019, EuPRAXIA)
CLEAR (CERN)	0.06-0.22	<0.2	10-500	3-20	1-25	

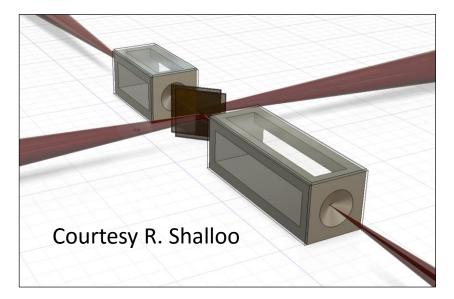
 $W_{\rm max} \approx (n_{\rm cr}/n_e)$

 $\tau_L \approx \pi c / \omega_p \quad w_0 \approx \lambda_p \sqrt{a} / \pi$

 $\propto {n_e}^{-1/2}$ $w_0^2 \propto {n_e}^{-1}$

Why staging LPWA?


- Energy of the laser required does not scale linear with energy gain: $E_L \sim n_{\rm cr} \cdot mc^2 \cdot a_0^2 \cdot c\tau_L \cdot \pi w_0^2$
 - For self-injecting and self-guiding:
 - 1 GeV needs 10 J -
 - 10 GeV will need 300 J
- Length of the plasma does not scale linear either: $L_{deph} = \left(\frac{n_{cr}}{n_0}\right)^{3/2} \lambda_0 \propto n_e^{-3/2}$
 - for 1 GeV, 3 cm dephasing length
 - For 10 GeV, 1 m dephasing length
 - Compensation of diffraction (and energy depletion) of laser pulse required
- Solution?
 - 10 systems with 10 J and 3 cm gas cells
 - (plus: compensation of energy chirp, Multistage design for correlated energy spread compensation, Ferran Pousan, 2018)


Adams Institute for Accelerator Science

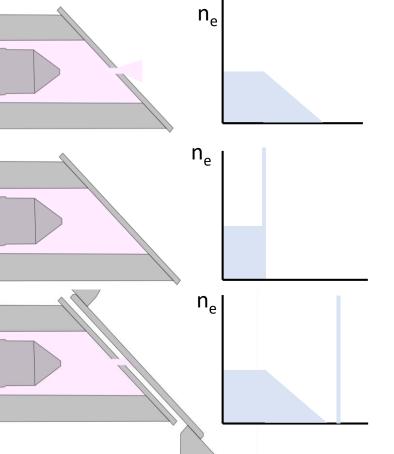
The road towards staging LPWA

First staging around 100 MeV gain staging (Steinke, 2016)

- We performed first experiments in late 2017
- Another campaign took place in Spring 2019


Application of Compact Laser-Driven Accelerator X-Ray Sources for Industrial Imaging Jan-Niclas Gruse

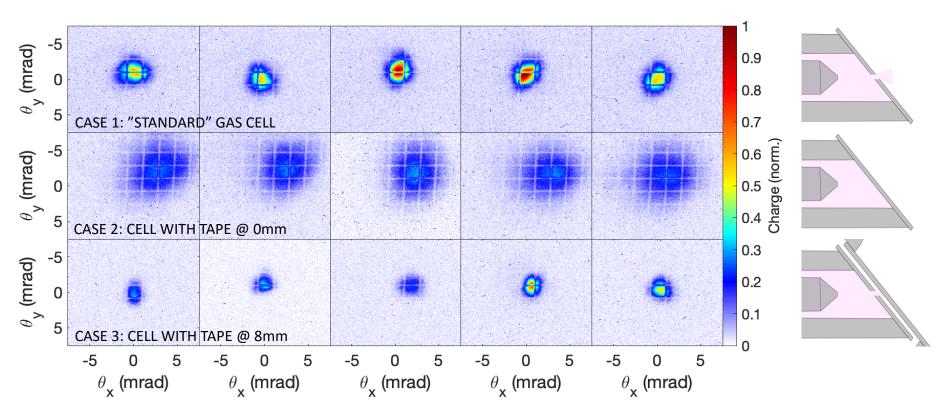
Adams Institute for Accelerator Science


The road towards staging LPWA

Imperial College Jain John Adams Institute for Accelerator Science

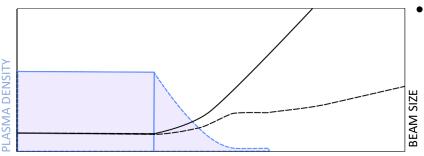
Emittance growth at different density ramps

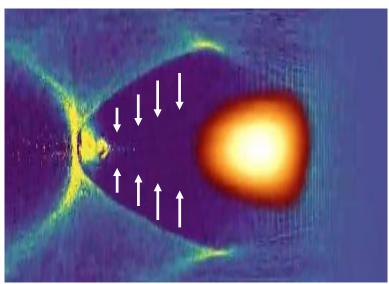
CASE 1: "STANDARD" GAS CELL


CASE 2: GAS CELL WITH TAPE COVERING APERTURE (0mm AFTER CELL)

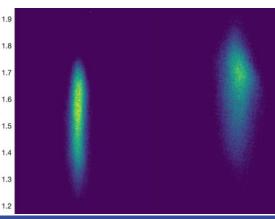
CASE 3: GAS CELL WITH TAPE FAR FROM CELL EXIT (8mm AFTER CELL)

Imperial College Jain John Adams Institute for Accelerator Science


Emittance growth at different density ramps


John Adams Institute for Accelerator Science

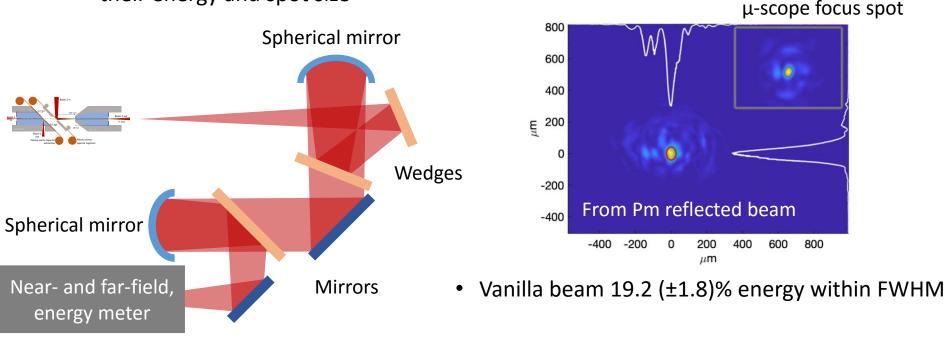
Emittance growth at different density ramps



LONGITUDINAL POSITION

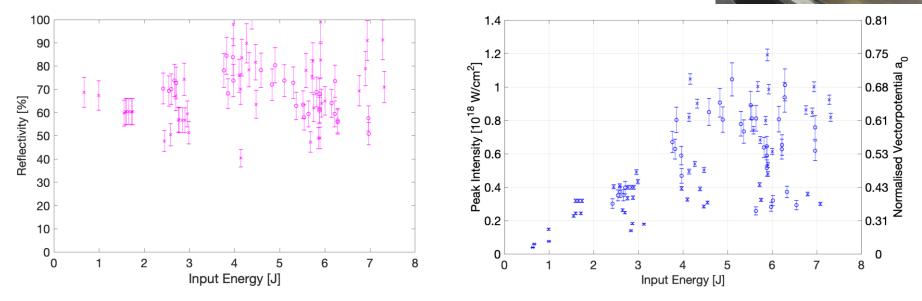
• Laser effectively extracted with thin Kapton tape, *but:*

- Tape placed at exit shows 1.8 x divergence increase. Possible causes are:
 - Sharp plasma density cut-off (no ramp)
 - Magnetic fields generated by laser solid interaction
- Plasma density downramp produces low divergence (~2 mrad) beams
- Kapton tape (125 μm) shows to reduce charge throughput
 - for low energies, 1.8
 but the charge 1.7
 remains at high 1.6
 energies) units



Reflectivity from the plasma mirror

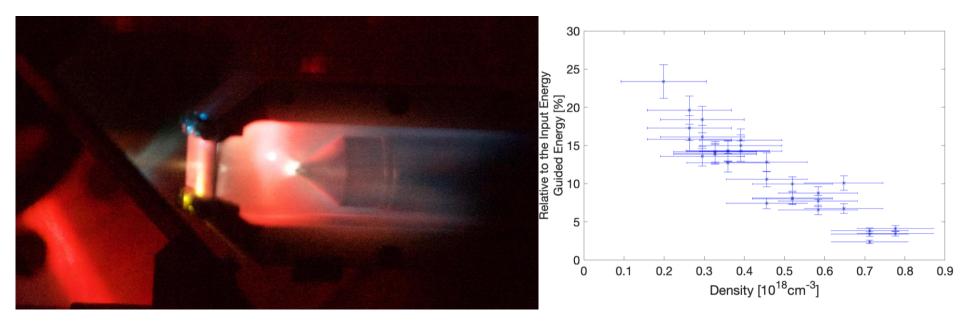
• The second laser pulse reflected from the plasma mirror is analysed through their energy and spot size


Imperial College London

Reflectivity from the plasma mirror

- High total reflectivity of >72% for above 5.5 J
- Continuous degradation of dielectric mirror before interaction
- a_0 of up to 0.7 into the 2nd gas cell

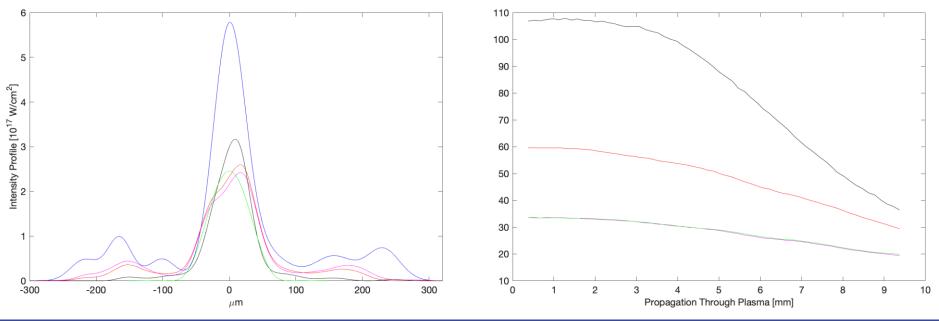
17/12/2018


Imperial College Jai London

17/12/2018

Guiding through the 2nd gas cell

• Total energy increased with lowering the density



Guiding through the 2nd gas cell – EPOCH 2D

Adams Institute for Accelerator Science

- Input beam modelled with 7 Gaussians (blue)
- Density at 0.3 · 10¹⁸ cm⁻³ matched the spot size (magenta)
- Simple Gaussian spot with the same intensity at the matched density (green)
- Doubled density (red) and 5 times density (black)

Imperial College Jai London

Future Work and remarks

- Another attempt?
 - We are working on a new design and new ideas of the experiment
 - Include a density ramp with 2 tapes
- 2nd beam quality has to be improved
 - $_{\circ}$ a₀ higher than 1 (-> simulation great for that)
 - Reduce the flux on the last mirror -> change the geometry of the set-up
- The first part of this talk will be available first half of next year in a publication by Michael Backhouse
- Second part as a proceeding to the EAAC early next year by J.-N. Gruse

17/12/2018

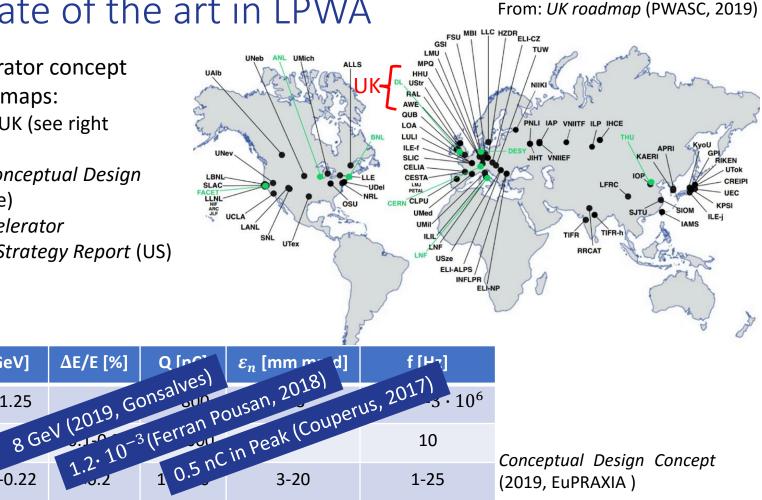
Thank you for the attention

Jan-Niclas Gruse^{*[1]}, N. C. Lopes^[3], J. C. Wood^[1], M. J. V. Streeter^[5], R. J. Shalloo, M. Backhouse, E. Gerstmayr, S. Rozario, K. Põder, T. L. Audet^[5], G. Sarri^[5], N. Bourgeois^[2], P. P. Rajeev^[2], S. P. D. Mangles^[1], Z. Najmudin^[1]

*The Blackett Laboratory, Imperial College London, <u>j.gruse16@imperial.ac.uk</u>, [1] JAI for Accelerator Science Imperial College London; [2] Central Laser Facility, STFC Rutherford Appleton Laboratory; [3] GoLP, IPFN, Instituto Superior Technico, U. Lisboa; [4] Deutsches Elektronen-Synchrotron DESY, Hamburg; [5] School of Mathematics and Physics, The Queen's University of Belfast

ΔΕ/Ε [%]

The state of the art in LPWA


Advance accelerator concept strategies/road maps:

- PWASC in the UK (see right bottom \rightarrow)
- EuPRAXIA Conceptual Design *Report* (Europe)
- Advanced Accelerator Development Strategy Report (US)

E [GeV]

0.4-1.25

J.U6-0.22

1-25

FLASHForward

SPARC LAB

CLEAR (CERN)

Conceptual Design Concept

(2019, EuPRAXIA)

What laser do you need for a ~ GeV wakefield accelerator

Fast enough:

 $W_{\rm max} \approx (n_{\rm cr}/n_e) \approx 1000 \qquad \rightarrow \qquad n_e \approx 2 \times 10^{18} \, {\rm cm}^{-3}$ Short enough:

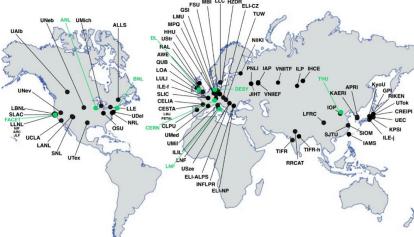
$$c\tau_L \approx \pi c/\omega_p \qquad \rightarrow \qquad \tau_L \approx 40 \,\mathrm{fs}$$

Intense enough:

$$a_0 \gtrsim 4 \qquad \rightarrow w_0 = \left(\frac{\sqrt{a_0}}{\pi}\right) \lambda_p \approx 15 \ \mu \mathrm{m}$$

Enough laser?:

$$E_L \sim n_{\rm cr} \cdot mc^2 \cdot a_0^2 \cdot c\tau_L \cdot \pi w_0^2 \approx 18 \,{\rm J}$$


Imperial College London

- Self-injection
 - First acceleration of mono-energetic ($\Delta E/E \approx 3\%$) in 2003 by 3 groups including ICL
 - Acceleration to >GeV "standard" with self-injection (2016, Põder)
 - Records show 8 GeV in a laser-heated capillary (2019, Gonsalves)

Conceptual Design Concept (2019, EuPRAXIA)

Plasma Wakefield Accelerator Research 2019-2020 A community-driven UK roadmap compiled by the Plasma Wakefield Steering Committee (PWASC)

The state of the art in LPWA

Advance accelerator concept strategies/road maps:

- *PWASC* in the UK (see right bottom \rightarrow)
- EuPRAXIA Conceptual Design Report (Europe)
- Advanced Accelerator Development Strategy Report (US)
- Self-injection
 - $_{\circ}~$ First acceleration of mono-energetic ($\Delta E/E\approx 3\%$) in 2003 by 3 groups including ICL
 - Acceleration to >GeV "standard" with self-injection (2016, Põder)
 - Records show 8 GeV in a laser-heated capillary (2019, Gonsalves)

Imperial College Jain John Adams Institute for Accelerator Science

The state of the art in LPWA

- Advanced Injection methods
 - Downward density transition (Suk, 2001)
 - Laser-induced transient density ramp (Chien 2005)
 - Plasma-density gradient injection for low absolute-momentum-spread (2008, Geddes)
 - $_{\circ}$ Ionization-induced injection (Clayton, 2010) \rightarrow 1.45 GeV in 1.3 cm
 - Shock assisted ionization injection (Thaury, 2015) \rightarrow supersonic gas jet to localise injection
 - ^o Dual-energy electron beam (Wenz, 2019) \rightarrow combine shock injector and colliding pulse
 - Controlling self-injection threshold (Kuschel, 2018)
 - Ionization injection with transverse magnetic field (Zhao, 2018)
- High charge

17/12/2018

- nC charge (Couperus, 2017)
- Ultra-short electron bunches
 - Near-threshold Injection for fs bunches (Islam, 2015)
 - Controlling self-injection via plasma density modulation toward as bunches (Tooley, 2017)
 - 。 as bunches via plasma density upramp (Weikum, 2016)

Imperial College Jain John Adams Institute for Accelerator Science

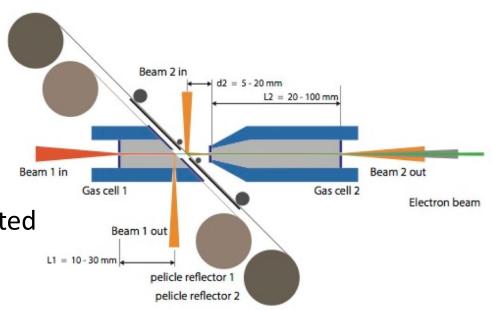
The state of the art in LPWA

- Low energy spread
 - $_{\circ}$ Ultracold electron bunch generation (Hidding, 2012) \rightarrow Colliding pulses and ionization injection
 - Energy chirp control (Wang, 2016)
 - Chirp mitigation by a modulated plasma density (Brinkmann, 2017)
 - Multistage design for correlated energy spread compensation (Ferran Pousan, 2018)

Preserving Emittance

- Transverse emittance growth in staging (Mehrling, 2012)
- Tailored focusing profiles in plasma accelerators (Dornmair, 2015)
- Longitudinally tailored plasma profiles (Xu, 2016)
- Overcoming Rayleigh lengths
 - Pre-formed plasma waveguides for pointing stabilization (Gonsalves, 2015)
 - Hydrodynamic optical-field-ionized plasma channels (Shalloo, 2018)
- High gradient focussing

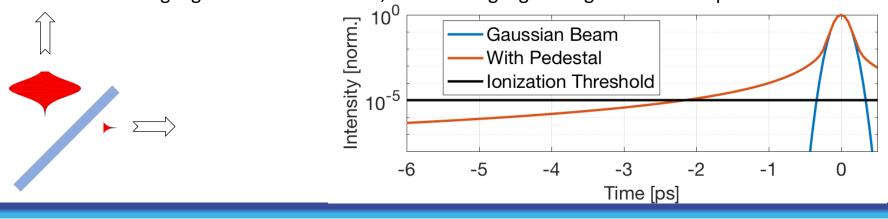
17/12/2018


• Active plasma lensing (van Tilborg, 2015)

Imperial College Jai London

Challenges of Staging LPWA Gas Cells

- First laser pulse determines the transverse position and angle of the electron bunch
 - $_{\circ}$ $\,$ $\,$ Transverse overlap of first and second laser pulse
 - Angle of propagation must agree
- Second laser pulse creates another wakefield for further acceleration
 - Temporal overlap of the pulses within a fraction of the plasma wavelength
- The second laser pulse gets reflected close to the focal plane



Plasma Mirrors (PM)

- Conventional optics are destroyed by ultra high intensities
- Plasma mirrors:
 - Low reflectivity under a certain intensity threshold
 - The laser pulse ionizes the surface and creates a plasma over a threshold and the overdense plasma reflects light
- Advantages:
 - Enhancing the time contrast
 - Reflecting high intense laser beam, while letting high energetic electrons pass

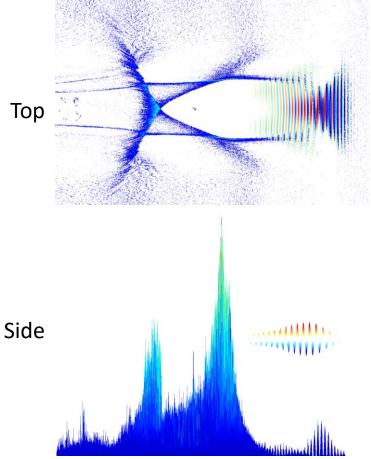
Notes

- Intense laser pulse is injected into a plasma
 - Density modulations create plasma cavities with high electric fields
 - $_{\circ}$ $\,$ Electrons can be injected and exploit these fields
- Crucial is the normalized vector potential/nomalised momentum

$$a_0 \sim \lambda_0 \sqrt{I_0}$$

Ponderomotive force repels the electrons from higher intensity regions

$$\vec{F} \sim - \vec{\nabla} a_0^2 \sim - \vec{\nabla} I_0$$


• Plasma cavities are in size of the plasma wavelength

$$\lambda_p \sim \sqrt{n_e}^{-1}$$

What is Laser Plasma-Wakefield Acceleration?

- Intense laser pulse is injected into a plasma
 - Density modulations create plasma cavities with high electric fields
 - Electrons can be injected and exploit these fields
- Crucial is the normalized vector potential/normalised momentum

$$a_0 \sim \lambda_0 \sqrt{I_0}$$

 Ponderomotive force repels the electrons from higher intensity regions

$$\vec{F} \sim - \vec{\nabla} a_0^2 \sim - \vec{\nabla} I_0$$

 Plasma cavities are in size of the plasma wavelength

$$\lambda_p \sim \sqrt{n_e}^{-1}$$