Using the IBEX Paul trap to test
nonlinear integrable optics
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Introduction

* How is a LPT useful for accelerator physics?
 What is a linear Paul trap (LPT) and how do they work?
* Which accelerator physics questions can we answer with a Paul trap?

* Recap of tune, resonance and intense beams

* Nonlinear integrable optics (NIO) - an interesting idea for high intensity
e Can it be tested on a Paul trap?

* Experimental progress towards NIO

e Future work
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Why is achieving high intensity difficult?

Why study these effects?
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Why are they hard to understand?
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Why not just use simulation?
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Why not study resonances with an accelerator?
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Tune in x
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The intense Beam Experiment (IBEX) at the Rutherford Appleton Lab, Oxfordshire
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Motion in a Paul trap
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 Hamiltonian of a Paul trap :
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e Hamiltonian of a conventional accelerator:
Hb — (p$+py) —K(S)(IB 2) —l— q
cam 2 poﬁoc’)’g
where f(s) = —qdB, _ _—1dB;

po dr  Bp dz
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IBEX and SPOD: Linear Paul Traps

= | IBEX at the Rutherford Appleton Lab, UK
e L N “ S-POD at Hiroshima University, Japan

/5% S B\ ' PTSX at Princeton Plasma Physics lab, US
 What are the advantages of a LPT?

 What are the limitations?
* No longitudinal effects = coasting beam
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Linear Paul Trap

1. Argon gas introduced to vessel at ~10~7 mbar

\ Electron gun
- | Mesh 2. Electron gun ionises Ar in trapping region
Central rods
. Faraday cup _ _ _ _
” ° 3. lons confined transversely via 4 cylindrical rods
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What can we discover using IBEX?

1. We want to know the location of (and understand!) dangerous resonances
to help with the understanding and operation of current machines

2. We want to investigate novel schemes for creating high intensity beams
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Future accelerators (Nonlinear Integrable Optics)

* In linear accelerators the motion is integrable — it is known to be bounded
* This is exactly what we want, the beam won’t be lost!

* Susceptible to resonances
 Realistically an accelerator can never be totally linear (errors + space charge)
* Nonlinearities -> no longer integrable due to coupling between x and y

* Require integrable system where small perturbations are allowed

At Fermilab they found such a system (Danilov & Nagaitsev 2010)

Unfortunately it requires a complicated potential

t , 8 , 16 ,
U(x,y) zlc—zIll{(}f:+.tj.z)2 @ 5 (x+iy)° +35c3f’ (x+iy)* +J
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Non-linear integrable optics

* Quasi-integrable version involves only octupoles
* Octupole must vary in strength proportlonal to 1/p°

e il
0..llll‘ ‘Illl-

e Can’t just have an octupole, need Ilnear focusmg o B .

R Octupole No.
* Requires round beams and@phase advance
* This is called a “T-insert”
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Image from [12]

To test in a Paul trap we require 2 things:
1. To be able to create a good enough T-insert with the Paul trap
2. Create correct octupole potential independent of linear focusing
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Why bother testing NIO in a Paul trap?

* No dispersion

* No chromatic effects

* T-insert parameters are easily variable
* Space charge effects easily included

e Can sit on resonance to study stability and excite resonances at arbitrary
frequencies

* Already testing at IOTA and UMER — each facility has different advantages

Problem: Paul traps are not usually operated in this way!
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1. Quadrupole + Octupole trap

* Building on work from Hiroshima University
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2. Design a T-Insert

0.35

0.30

Constraints:

* n7 phase advancein x andy
* B, =B, in centre of drift
* a,=oa,=0incentre of drift
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013
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Max 3, and 3,

Phase advance close to 0.3 over drift

Bandwidth of amplifiers — pulses can’t be too short or too large

Try to avoid too much asymmetry — more susceptible to resonance at high intensity
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3. T-Insert testing

Length, = Length, *

Voltage, = Voltage, * «

1

vk

Lattice parameter

Element number

1 2 3
d (drift length (m)) 150 90 180
I (quadrupole length (m})) 80 180 180
v (quadrupole voltage (V)) | 26.83 -16.70 13.64

A ds 6o | | "3| ds d, d,
;E i v Time (s)
1, 1,
* We varied pulse strength and length
* Created a short T-insert that was easier to correct
* Looked at 3 different T-inserts scaling voltage and length
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To minimise beta function operated at lower tune (0.5 + 0.135)
 UMER also looking to operate at this phase advance
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4. Quality control
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Rieas = 3mm (from simulation)

*  For octupole only desired phase advance tolerance in IOTA is 10?2 (reduction in DA of 10%).
* Magnet tolerance is stated to be an integrated strength of harmonics relative to octupole field is less
than 1% (100 units).
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Conclusions and further work

IBEX is a useful tool for accelerator physics studies

Commission of IBEX has ended and we’re now capable of a range of interesting physics

To test quasi-NIO a number of often competing constraints should be met

However, it should be possible.

Further simulations of the new T-insert required
e Space charge

Octupole upgrade to the trap needed — must be well designed

Experimental testing of quasi integrable NIO

Potential to vary a wide range of experimental parameters.
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Thanks!
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* For the waveforms with larger voltages ran into problems with the amplifiers, especially those on the
endcaps, with the lower band width:

Central rods

End caps

Voltage (V)

6 8 10 12 14
Time (us)

* Decided to not apply the alternating voltage to the end caps and to match back to original waveform
before extracting:

Voltage (V)
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Warp simulations

* Looked at dynamic aperture and tune spread over 1000 periods.
« The T-Insert is applied using a single matrix transformation.

Simulation 2

Simulation 1
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The colour bar shows
the log of the change in
tune over the simulation
for particles within the
dynamic aperture.

Grey regions are
particles that survived
but are outside of the
dynamic aperturel®,
Dynamic aperture is
defined as the radius of
the maximum circle in
physical space, in which
all particle survive the
1000 periods.
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Simulation 1
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octupole

Dynamic Ap
= 2.6 mm

Simulation 2

Realistic
Octupole

Dynamic Ap
=2.1mm
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