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Compact Linear Collider
• Linear e+e- collider for precision particle 

physics measurements.

• Staged implementation up to 3 TeV.

• Linear due to synchrotron losses.

• 100 MV/m accelerating gradient for high 
energy with reasonable machine length.
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RF Accelerating Structures for CLIC
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• X-band (11.994 GHz RF)
• Traveling wave: RF pulse passes 

through the structure, consist 
of a series of coupled resonant 
cells.

• Accelerating gradient (energy 
gain of particles) = 100 MV/m

• Peak surface field ≥ 200 MV/m, 
depends on design.

• High fields require high power: 
40 - 50 MW without beam.

• CLIC BDR requirement: ≤ 3x10-7

bpp/m to limit losses of 
luminosity.
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High-Gradient Limits: Electric Field
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Dependence of peak E field with group 
velocity (C. Adolphsen)

• Kilpatrick’s criterion: ‘classic’ quantity defining maximum surface E field.

• Different structure designs can reach different peak accelerating gradients and 
surface fields.

• It appears that breakdown is not just a function of E field. Dependence on H field, 
group velocity, power flow, and total voltage have all been observed.



High-Gradient Limits: Power Flow
• Experimental data from CERN, SLAC and KEK suggests ultimate limit 

depends on power flow, not E field.
• Global power flow: input RF power divided by aperture circumference
• Local power flow: modified Poynting vector, Sc – used to optimise geometries
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Example of structure 
tapering profile:

Example of surface Sc calculation in 
1/8th of a damped cell: 𝑆𝑐 = 𝑅𝑒 𝐸 × 𝐻∗ +

1
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𝐼𝑚 𝐸 × 𝐻∗

Structure design and simulations: A. Grudiev



High-Gradient Limits: Power vs. E Field

6Plots from W. Wuensch’s slides for LCS 

P/C = 0 for 
standing wave 

structures!
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Limitations of Sc

• Breakdown locations: 
• Many structures tend to have most breakdowns 

close to the input despite tapering.

• Post-mortem results of crab cavity do not match 
Sc prediction.

• Compatibility with DC experiments:
• No (real or imaginary) power flow at f = 0.

• Sc uses unperturbed RF fields – what if we 
consider how local fields change during a 
breakdown?
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Breakdown locations vs. Sc

Breakdown locations vs. E field

Structure post-mortem: E. R. Castro



Evolution of a Breakdown

8H. Timko et. al., Contrib. Plasma. Phys. 4, 229 (2015). 
Animation by K. Sjobaek

• PIC simulations of breakdowns show 
that:

• Breakdown is a runaway process 
involving heating of an emission site 
and plasma formation.

• Takes a short but finite time to develop.

• A large number of charge particles is 
produced in the process – accelerating 
these particles requires a large influx of 
power.

• If power flow is insufficient, the field 
will decrease.

• Note that breakdowns are typically very 
small: ~10s of nm initially and ~50 um 
craters



Hypothesis

• Ultimate BD limit is a function of available power, like with Sc.

• Nascent breakdown extracts power from RF by acceleration of 
charged particles (electrons). Interaction through E field only.

• Emitted current is a function of surface E field.

• Local surface E field decreases under BD loading. (In this case, we 
approximate the effect of complex plasma dynamics by a simple 
antenna on the surface.)

• Higher sustained E field under loading = higher BDR.



Outline of Procedure
Assume that any breakdown site will emit
current as this function of surface field:
(material property, to be fitted)

For every point in the structure,
calculate a dependence of local field
on antenna current:

E

Isurface field E

breakdown 
current I

Unperturbed field, as determined 
by usual RF simulations.

Slope Rbd determined by forcing 
known current through antenna 
and calculating change in local field.

𝑅𝑏𝑑 = 𝑅𝑒
𝑉𝑎𝑛𝑡𝑒𝑛𝑛𝑎
𝐼𝑎𝑛𝑡𝑒𝑛𝑛𝑎

Define breakdown impedance as:
Example of field magnitudes with 
antenna as power source:

Power flow



Outline of Procedure
Combine the two plots to find the equilibrium solution:

surface field E

breakdown current I

Original, unperturbed field

Field when loaded by a breakdown.
This is our new quantity.

Implications: No BD without E field, but power flow plays an important role.
Now repeat the calculation for every point in the structure!



Application to the CLIC Crab Cavity
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0° position

Antennas placed in rings around each iris.

180° position

90° position



Application to the CLIC Crab Cavity
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Peak value of 
118 MV/m

0° 180 ° 0° 180 °

Structure post-mortem: E. R. Castro

Cell 1 Cell 2



Application to T24 Structures
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RF Input

RF Output

Iris #2

Iris #26

T24 PSI structure, E field complex magnitude

Antennas placed near peak 
E-field region of each iris.



Application to T24 Structures
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Peak value of 125 MV/m

T24 PSI 1
full history

Input

T24 PSI 2
112 MV/m, 200 ns 

flat run

T24N4
until 1/6/2019

Breakdown locations in T24 structures:

Output

T24N5
until 1/6/2019



Consistency with Sc in TM010 cells
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Apex Wall Apex Wall

E Sc

Apex

Wall

Locations of breakdowns 
within cells:

Prediction of maximum 
gradient:



‘Voltage Effect’
• Some experiments show that maximum achievable E field depends on total voltage, i.e. 

gap size.

• DC Spark System at CERN showed constant BDR for constant 𝐸 × 𝑑0.28

• Neutral beam injector for ITER with 1 MV DC voltage incorporates intermediate voltage 
shields to achieve higher fields by exploiting this effect.

• The loaded electric field model shows this effect and provides an alternative explanation.
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Conditioning curves for various gap 
sizes in the DC system at CERN

Breakdown impedance calculations 
for simplified DC system

MITICA beam source for ITER

CERN DC system results: I. Profatilova
MITICA diagram: V. Toigo et. al.



Summary

• New breakdown quantity proposed: breakdown-loaded E field.

• Follows E field distribution but limited by power.

• Makes distinction between unperturbed fields and fields under 
breakdown.

• Works well for RF structures:
• Correct distribution of breakdown locations.
• Consistency with Sc of limiting gradient.

• Other advantages:
• Resolves issue of no power flow in DC experiments and predicts voltage 

dependence.
• Has square root dependence on frequency in RF.
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Thank you!
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Antenna Length Dependence
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𝑅𝑏𝑑 ∝ 𝑙2

𝑅𝑟𝑎𝑑 =
𝜋

6
𝜁0

𝑙

𝜆

2

Hertzian dipole in free space:

Observed dependence:



Dependence of Rbd on E Field
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Within a given cell:

𝑅𝑏𝑑 ∝ 𝐸𝑠𝑢𝑟𝑓
2



Circuit Model
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RF source matched load

Breakdown 
antenna

Vacc

Vantenna
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