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Extreme	conditions?	….	High	Energy	Density	Matter

Warm	Dense	matter	(WDM):	
1-100	eV.	E.g.	planets,	ICF

Hot	Dense	matter	(HDM):	
>	100	eV.	E.g.	stars.	

Many	processes	governing	dense	energetic	plasmas	remain	untested/unquantified	due	to	
theoretical	complexity	and	experimental	difficulties.

Densities	>	1	g/cc
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Why	perform	ultrafast	X-ray	absorption	measurements?

Ultrafast:	Transient	states	(in	the	lab)	and	
rapid	processes;	sub-picosecond	timescales.

X-rays:	Samples	too	dense	for	optical	
probing.	Allows	access	to	core	electrons.

▷ ▷
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• X-ray	Absorption	Near-Edge	Structure	(XANES)	
• Extended	X-ray	Absorption	Fine	Structure	(EXAFS)
• Ionisation	Potential	Depression	(IPD).
• Excited	state	absorption	lines.
• Non-thermal	processes.

• Temperature
• Electronic	and	local	atomic	structure
• Ionisation	energies/rates
• Electron-Ion	equilibration	rates

Mahieu	et	al.	Nat.	Comms,	9,	3276	(2018)
Dorchies	et	al.	Phys.	Rep.	657,	1-26	(2016)
Cho	et	al.	PRL	106,	167601	(2011)
Mančic	́	et	al.	PRL	104,	035002	(2010)
Engelhorn	et	al.	PRB	91,	214305	(2015)

Recent	
publications

Ultrafast	X-ray	absorption	measurements

Hoarty	et	al.	PRL	110,	265003	(2013)
Circosta	et	al.	PRL	109,	065002	(2012)
Iglesias.	HEDP	12,	5-11	(2014)
Vinko et	al.	Nat.	Comm 6,	6397	(2015)
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1 A	Practical	Introduction	to	Multiple	Scattering	Theory,	Bruce	Ravel,	2005	

Slope	and	peak	positions	detail	electronic	&	
atomic	structure	and	broadening	of	features	
reveal	electron	&	ion	temperature.

Local	scattering	of	ejected	
photoelectrons	cause	modulations	in	
absorption	close	to	resonant	edge.

X-ray	Absorption	Near	Edge	Structure	(XANES)	&	
Extended	X-ray	Absorption	Fine	Structure	(EXAFS)

(1)

Fe
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What	type	of	X-ray	source	do	we	need?

Synchrotrons XFELs Laser-plasmas LWFA

Duration 10	– 100	ps <	100	fs 1	-10	ps <	100	fs

Spectrum Broad	and	
Smooth

Narrow Broad
Not	Smooth

Broad	and	
Smooth

• High	photon	flux	from	small	source	–
single	shot	if	possible

• Multi-keV photon	energies
• Short	sub-picosecond	duration
• Broadband	and	smooth	spectrum
• High	rep-rate	is	desirable
• Temporal	matching	to	pump?

2Suggit	et	al.,	Nat.	Comm.	3,	1224	(2012).

(2)
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Campaign	in	August	2017

Gemini	TA3,	Central	
Laser	Facility,	UK	
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Drive	laser
Duration	=	47	± 5	fs
Energy	=	9	± 0.3	J	(43%	in	FWHM)
Intensity	=	4.9	± 0.6	x	1018 W/cm2

(a0 ≈	1.5)



Laser-wakefield	accelerator	performance
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• Two	stage	gas	cell.	First	stage	(3mm	long)	2%	Nitrogen	mix	for	ionisation	
injection,	second	stage	≈20mm	long,	pure	helium.

• Went	for	high	charge	(and	high	X-ray	flux)	“messy”	electron	beams	(using	
increased	density	in	first	cell).

ne	=	1.2x1018cm-3

ne	=	2.6x1018cm-3
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(≈1022-1023	photons/s/mm2/mrad2/0.1%	BW)

LWFA	X-ray	results	– broad	spectrum	using	filter	array
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Ecrit ≈	12	keV
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Ecrit =	9.9	± 1.5	keV,	and	the	entire	beam	contained	7.2	± 2.8	× 105 photons/eV	at	5	keV	

Fit	to	filter	
transmissions
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LWFA	X-rays	– High	resolution	using	crystal	spectrometer

Bragg’s	law
2𝑑 sin 𝜃 = 𝑛𝜆

Graphite	2d	=	6.708	Å
Range	of	energies	≈	2	- 10	keV

Resolution:
dE/E	≈	2000

Zastrau et	al.	J.Inst.	8	P10006	(2013)
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2d	=	Crystal	lattice	spacing	(fixed)
θ =	Incident	ray	angle
λ =	Diffracted	X-ray	wavelength

• Bragg	reflections	provide	sweep	of	X-ray	
energies	on	detector.

• Mosaic:	Random	orientation	of	crystallite	
planes	allow	more	rays	to	be	diffracted	to	
detector	- 10	times	more	efficient	than	
“perfect”	crystal,	with	small	sacrifice	in	
resolution.

1-to-1	Mosaic	“focusing”

Solid	rays:	Single	wavelength
Dashed	rays:	Min/max	wavelength



Crystal	spectrometer	results

Single	shot

Ti

K-edge

Spatial

Spectral
axis

Brendan	Kettle,	JAI	Fest	2019,	December	6th 13/21



Crystal	spectrometer	results
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Crystal	spectrometer	results

21.85o
20	shots 13	shots

22.05o

Can	fold	out	variations....

Single	shot

Ti

K-edge

Spatial

Spectral
axis
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1 A	Practical	Intro.	to	Multiple	Scattering	Theory,	B.	Ravel,	2005
2 Bleith	et	al.	J.	Mater.	Chem.	A,	2014,	2,	12513	

Bleith	et	al.
(synchrotron)	
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Titanium	K-edge	XANES	measurements
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Direct	spectral	measurement	of	X-rays	
with	approximately	2.2	eV	resolution	
over	an	80	eV	window.

Normalised	absorption,	10µm	Ti	Foil

Signal-to-noise	=	300:1

Poisson?	….	should	be	1100:1

…	Noise	is	mostly	from	electron	dump,	
not	X-ray	source and	can	be	improved…

(Single	Shot)

Signal data
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Reconstructed	fit



Ion	Structure

Single	Shot	XANES	measurement

Measurement

Pre-edge	
transitions

Recently	accepted	for	PRL:	https://arxiv.org/abs/1907.10167
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Signal	Data
Signal	Fit
Fit	error
Sync.	Ref.

• Extracted	features	- forbidden	
transitions	into	3d	shell	(allowed	by	
3d-4p	mixing

• Estimate	ΔTe ≈	0.4	eV	resolution	in	
electron	temperature	change

• Ion	temperature/structure	in	post	
edge	structure

11	shots…

Te



Model	predictions	for	electron-ion	equilibration	in	dense	plasmas
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Copper	DFT	simulations	(GPAW)

Simulations	by	Rory	Baggott

• Electron	and	ion	temperatures	
have	individual	signatures

• Can	independently	measure	
the	electron	and	ion	
temperature	on	a	single	shot.

• Very	interesting	for	high	
energy	density	samples	due	to	
ultrashort	pulse	duration	of	X-
rays.



Model	predictions	for	electron-ion	equilibration	in	dense	plasmas

• Temperature	equilibration	
estimates	for	Copper

• 20ps	X-ray	driver
• Comparing	Two-

temperature	model	with	
plasma	based	model
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Possible	to	measure	
equilibration	rates	of	
WDM	and	HDM.



In	conclusion

• High	resolution	direct	spectral	measurement	
of	LWFA	X-rays

• Single-shot	multi-keV	absorption	of	Ti	K-edge.

• With	shielding/improved	geometry	this	can	
be	even	better	– post-edge	leads	to	ion	
information.

• With	appropriate	heating	scheme;	
Measurements	of	ultrafast	processes	in	high	
energy	density	matter.

e-

Heater	
pulse
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Thank	you	for	listening
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Error/Noise	contributions
• Hard	photon	background	from	electron	dump.	Dominates.	Can	be	significantly	

reduced	by	sweeping	electrons	in	other	direction	and	improving	shielding.
• Reference	map	errors.	Give	larger	scale	fluctuations.	Can	be	reduced	by	a	full	

crystal	characterisation.
• Inherent	source	fluctuations.	



▷ Crystal	spectrometer	noise	issue
Looking	at	low	power	shots	with	”single	hit”	noise.
Run	charge	recombination	routine	and	gauge	spectrum.

On	full	power	shots,	this	becomes	≈x200		

Can	improve
• Shielding
• Electron	dumping
• Detector	geometry	

(including	curved	crystal)
To	reduce	noise	and	move	
closer	to	single	shot	
measurements.

≈	4	Joule	shot S.D.	=	10
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