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Extreme conditions? .... High Energy Density Matter

Densities > 1 g/cc

Warm Dense matter (WDM):
1-100 eV. E.g. planets, ICF

s (Z*e)?
R.KT,

Hot Dense matter (HDM):
> 100 eV. E.g. stars.

Many processes governing dense energetic plasmas remain untested/unquantified due to
theoretical complexity and experimental difficulties.
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Why perform ultrafast X-ray absorption measurements?

> X-rays: Samples too dense for optical > Ultrafast: Transient states (in the lab) and
probing. Allows access to core electrons. rapid processes; sub-picosecond timescales.
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Ultrafast X-ray absorption measurements

» X-ray Absorption Near-Edge Structure (XANES)

* Extended X-ray Absorption Fine Structure (EXAFS)

* |onisation Potential Depression (IPD).

* Excited state absorption lines.

* Non-thermal processes. Etc.

* Temperature ‘

Electronic and local atomic structure
* lonisation energies/rates
* Electron-lon equilibration rates Etc.

Processes &

Techniques

\@1 @ @
(@)

Provide

Umstadter, Physics 5, 88 (2016)

Mahieu et al. Nat. Comms, 9, 3276 (2018) Hoarty et al. PRL 110, 265003 (2013)
Recent Dorchies et al. Phys. Rep. 657, 1-26 (2016) Circosta et al. PRL 109, 065002 (2012)

publications Cho et al. PRL 106, 167601 (2011) Iglesias. HEDP 12, 5-11 (2014)
Mancic et al. PRL 104, 035002 (2010) Vinko et al. Nat. Comm 6, 6397 (2015)
Engelhorn et al. PRB 91, 214305 (2015)
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X-ray Absorption Near Edge Structure (XANES) &
Extended X-ray Absorption Fine Structure (EXAFS)

%ﬂmm Institute for Accelerator Science

/

(1) X-ray Absorption Fine-Structure T T T T T T
20 XANES N
112
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Scattering Atom

Absorbing Atom

Slope and peak positions detail electronic &
atomic structure and broadening of features
reveal electron & ion temperature.

Local scattering of ejected
photoelectrons cause modulations in
absorption close to resonant edge.

—p

L A Practical Introduction to Multiple Scattering Theory, Bruce Ravel, 2005
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What type of X-ray source do we need?

* High photon flux from small source — (ol ugsitetal, Nat. Comm. 3, 1224 (2012).
single shot if possible § T

* Multi-keV photon energies % 10° ‘ L

* Short sub-picosecond duration 2

* Broadband and smooth spectrum g

* High rep-rate is desirable ' 4 5 6 7

 Temporal matching to pump? photon energy [keV]

Duration 10— 100 ps <100 fs 1-10 ps <100 fs
Spectrum Broad and Narrow Broad Broad and
Smooth Not Smooth Smooth
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Experiment Results
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Campaign in August 2017

Gemini TA3, Central

Laser Facility, UK X-ray CCD

with Ti filter

Lanex
€ \ Filter array

Tape drive
' '
/40 i
[ ——— / ]
= = = g
f v HAPG . 1
Gas Cell Magnet crystal Direct X-ray CCD
t
density of high amplitude plasma wave trapped electron
” ” , Drive laser
' ) trajectory Duration=47 +5fs
; y Energy =9+ 0.3J(43% in FWHM)
, bright X-ray flash Intensity = 4.9 + 0.6 x 10 W/cm?

(ag=1.5)
betatron oscillations
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Laser-wakefield accelerator performance

* Two stage gas cell. First stage (3mm long) 2% Nitrogen mix for ionisation
injection, second stage =20mm long, pure helium.

* Went for high charge (and high X-ray flux) “messy” electron beams (using
increased density in first cell).

1 Log,Q (fC/MeV/mrad) 2.4
I

n,= 1.2x10%¥cm-3

-

n, = 2.6x10%¥cm-3

Divergence (mrad)
o S

DO
()

0.5 0.7 09 1.1
Electron Energy (GeV)

1.3
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Campaign in August 2017

Gemini TA3, Central

Laser Facility, UK X-ray CCD

with Ti filter

Lanex
Tap(i drive € Filter array
f/40 f
[—— =
CVféri » | Eg_m
f v HAPG . .
Gas Cell Magnet crystal Diregt X-ray CCD
t
density of high amplitude plasma wave trapped electron
. » ' Drive laser
' ] trajectory Duration =47 + 5 fs
( . , Energy =9+0.3J(43% in FWHM)
. b, ' bright X-ray flash Intensity = 4.9 + 0.6 x 10 W/cm?
! i

(ag=1.5)
betatron oscillations

Brendan Kettle, JAI Fest 2019, December 6th



Imperial College }4\ /
London John Adams Institute for Accelerator Science

LWFA X-ray results — broad spectrum using filter array

Synchrotron spectrum for E..;; = 9.9 keV

Fit to filter
transmissions

o
o)
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Photon energy (keV)
2
d’I E |, [ E
dEdS? % 2E,, ’CZ/ *| 2E
6=0 crit
0

=9.9 + 1.5 keV, and the entire beam contained 7.2 £ 2.8 x 10° photons/eV at 5 keV

E

crit

(=10%2-1023 photons/s/mm?/mrad?/0.1% BW)
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Campaign in August 2017

Gemini TA3, Central
Laser Facility, UK

X-ray CCD
with Ti filter

Tape drive
v

f/40 = E
T

Gas Cell Magnet
t

density of high amplitude plasma wave

Filter array

v

A

v HAPG
crystal

o 37

*
Direct X-ray CCD

trapped electron

. » ' Drive laser
' ' trajectory Duration =47 £ 5 fs

( ( | y Energy =9+ 0.3J(43% in FWHM)
: ‘ [ ' bright X-ray flash Intensity = 4.9 + 0.6 x 108 W/cm?

(ag=1.5)
betatron oscillations
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LWFA X-rays — High resolution using crystal spectrometer

Bragg’s law 2d = Crystal lattice spacing (fixed) Graphite 2d = 6.708 A
_ 0 = Incident ray angle N
2dsin6 = nA A = Diffracted X-ray wavelength Range of energies = 2 - 10 keV
1-to-1 Mosaic “focusing”  Bragg reflections provide sweep of X-ray
energies on detector.
Mmax 3 * Mosaic: Random orientation of crystallite

Quasi-focus

planes allow more rays to be diffracted to
at detector

min detector - 10 times more efficient than

“perfect” crystal, with small sacrifice in
resolution.
Crystallites Resolution:
dE/E = 2000
Solid rays: Single wavelength Zastrau et al. J.Inst. 8 P10006 (2013)

Dashed rays: Min/max wavelength
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Crystal spectrometer results

Spectral
axis

——— Spatial —
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Crystal spectrometer results

20 shots
21.85°

-Single shot '

Spectral
axis

——— Spatial —
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Crystal spectrometer results

20 shots 13 shots

 Single shot

21.85° 22.05°

Spectral
axis

3000

« Spatial — Can fold out variation
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1 5] \\\\ ————— post-edge fit
-------- pre-edge fit
<
g
2
®
0 ) .
Ti K-e
§ Ht(E)
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E (eV)
Transmission Lineout - with spectral fitting X(E) — p(E)—po(E)
pi(E)
0.7r
_ 05 0.8 i
g g Bleith et al.
w041
- <06 (synchrotron)
w 0.3r %
= =04} ]
£ 0.2F g
5 0.2 |
0.1F Z
O L L L L L
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o1l | Photon Energy (eV)
4920 4930 4940 4950 4960 4970 4980 4990 5000 LA Practical Intro. to Multiple Scattering Theory, B. Ravel, 2005
Fitted photon energy (eV) 2 Bleith et al. J. Mater. Chem. A, 2014, 2, 12513
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Titanium K-edge XANES measurements

Normalised absorption, 10um Ti Foil

— Signal data | Direct spectral measurement of X-rays
1.5 [ e Bleith et al. 1 with approximately 2.2 eV resolution
over an 80 eV window.

| B w m Signal-to-noise = 300:1

Poisson? .... should be 1100:1

... Noise is mostly from electron dump,
not X-ray source and can be improved...

4960 4970 4980 4990 5000
Energy (eV)

(Single Shot)
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Sigmoid fitting

1
15 S@) = 1t e ] .
h Reconstructed fit
1 ! it |
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Single Shot XANES measurement

Measurement
(a) (b)' s , — Signal Data
0 lon Structure == Signal Fit
1.5+ ‘
\l jo1
i o Il t W Sync. Ref.
Pre-edge
—~ 1 transitions

* Extracted features - forbidden
transitions into 3d shell (allowed by
3d-4p mixing

e Estimate AT, = 0.4 eV resolution in
electron temperature change

i * lon temperature/structure in post

4980 4990 5000 edge structure

4960 4970 4980 4990 2000
Energy (eV)

11 shots...

Recently accepted for PRL: https://arxiv.org/abs/1907.10167
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Model predictions for electron-ion equilibration in dense plasmas

Copper DFT simulations (GPAW)

—— Cold ions & electrons
= = Cold ions, T,=1eV
---- T,=T,=1eV

* Electron and ion temperatures
have individual signatures

* Canindependently measure
the electron and ion
temperature on a single shot.

* Very interesting for high

_. energy density samples due to

y e e ultrashort pulse duration of X-
() a2t 1 ' * * * rays.
4950 4960 4970 4980 4990 5000 5010 5020
Energy (eV)

p—t
T

----------------
-------
-----------
*

Norm. Absorption
()
ot

Simulations by Rory Baggott
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Model predictions for electron-ion equilibration in dense plasmas

6
—T, -  Temperature equilibration
—~O[__T (TTM) y estimates for Copper
% Tl // P e 20ps X-ray driver
=4 . (FGR)| o/ - ) . ‘ i
O y 4 - omparing Two
E 5 // /j/ y _ temperature model with
Z’-‘i 4 /// y plasma based model
y

=2 //j/ V4
é) // o { _Y AT =1eV Possible to measure

! /7 ///; At = 4ps equilibration rates of

0 - A 1 | WDM and HDM.

0 10 20 30 40 50
Time (ps)
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In conclusion ® (o |

0.2
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0.1

0

High resolution direct spectral measurement | oo
of LWFA X-rays a1

* Single-shot multi-keV absorption of Ti K-edge.

» With shielding/improved geometry this can
be even better — post-edge leads to ion
information. 0k

0.7
4980 4990 5000

4960 4970 4980 4990 5000

» With appropriate heating scheme; Energy (eV)

Measurements of ultrafast processes in high
. Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser
ene rgy d ens |ty m atte I. A wakefield accelerator source
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H eate r Single-shot absorption measurements have been performed using the multi-keV X-rays generated
by a laser wakefield accelerator. A 200 TW laser was used to drive a laser wakefield accelerator

p u Ise in a mode which produced broadband electron beams with a maximum energy above 1 GeV and
a broad divergence of ~ 15 miliradians FWHM. Betatron oscillations of these electrons generated

= 1.240.2 x 10° photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300:1.

e This was sufficient to allow high-resolution XANES measurements at the K-edge of a titanium

sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous
measurements of both the electron and ion distributions in matter heated to eV temperatures by
-> l % comparison with DFT simulations. The unique combination of a high-flux, large bandwidth, few
— femtosecond duration X-ray pulse synchronised to a high-power laser will enable key advances in

¢ LS the study of ultra-fast energetic processes such as electron-ion equilibration.
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H eate r Single-shot absorption measurements have been performed using the multi-keV X-rays generated
by a laser wakefield accelerator. A 200 TW laser was used to drive a laser wakefield accelerator

p u Ise in a mode which produced broadband electron beams with a maximum energy above 1 GeV and
a broad divergence of ~ 15 miliradians FWHM. Betatron oscillations of these electrons generated

= 1.2+0.2 x 10° photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300:1.
e This was sufficient to allow high-resolution XANES measurements at the K-edge of a titanium
sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous

measurements of both the electron and ion distributions in matter heated to eV temperatures by
-> l E comparison with DFT simulations. The unique combination of a high-flux, large bandwidth, few
— femtosecond duration X-ray pulse synchronised to a high-power laser will enable key advances in
¢ L] the study of ultra-fast energetic processes such as electron-ion equilibration.
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Error/Noise contributions

* Hard photon background from electron dump. Dominates. Can be significantly
reduced by sweeping electrons in other direction and improving shielding.

* Reference map errors. Give larger scale fluctuations. Can be reduced by a full
crystal characterisation.

* Inherent source fluctuations.

BG Signal Crystal Spectrometer Noise Source

Lea
Shielding

Il

(Bricks on side as well)

(side bricks removed)

29 cm
“Low” Energy Electrons

P —
<

High Energy electrons

Kicker Magnet



> Crystal spectrometer noise issue

Looking at low power shots with “single hit” noise.
Run charge recombination routine and gauge spectrum.

Noise energy distribution
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= 4 Joule shot
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Can improve

* Shielding

* Electron dumping

* Detector geometry
(including curved crystal)

To reduce noise and move

closer to single shot

measurements.



BACKGROUND NOISE

We assess the background level on the crystal spectrometer by summing the CCD counts on shots where the crystal
is moved out of the direct path of the X-ray beam, and hence no signal is being reflected towards the detector. For
each of these shots we also sum the total electron charge simultaneously detected on the electron spectrometer. Fig. 3
(a) depicts a linear correlation for the number of CCD counts as a function of electron charge.

—~
L
~

10" :
¢ (b) f ——#26-3.3J, 1 Bar
| —— #31-5.51J, 1 Bar
lll'] f #32-5.01J, 1 Bar 1
f — #37- 8.2, 0.25 Bar| |
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%
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107§
0.6} 4

04}

Crystal Spec. Counts (AU)
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Cluster Energy (keV)

FIG. 3: (a) Crystal spectrometer CCD counts as a function of measured electron charge for shots with no crystal in place. (b)
Single-hit cluster energies for various background shots at low background flux.

In an attempt to further characterise this background signal we perform a single-hit cluster analysis of the individual
CCD strikes on shots with a low enough level of flux (thus avoiding strike pile-up). Less than 3% of CCD pixels
registered a value above threshold for all shots used in the single-hit analysis. A cluster combining algorithm was used
to calculate the total freed energy for each individual identifiable strike on the CCD. Fig. 3 (b) depicts the number of
strikes as a function of total contained energy in each cluster. For the shots depicted, various plasma densities and
laser energies were used, corresponding to varying levels of electron charge being generated from the LWFA. Shot 26
in the blue has no detectable electron charge driven, and represents the dark current of the CCD. All shots apart from
26 show a broadband spectra of cluster energies tailing out to 30 keV (which is also where the quantum efficiency of
the CCD falls off).

These results indicate that in the current configuration the background noise is being produced by the accelerated
electrons interacting with the target chamber and creating secondary noise sources. Importantly, it should therefore

be possible to significantly reduce the background with improved shielding and appropriate electron beam dumping,
away from the CCD.
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