Measurement of Λ_c^+ production in Pb-Pb collisions with ALICE

Luuk Vermunt* (Utrecht University), for the ALICE Collaboration

Workshop: Heavy-flavour hadronisation at the LHC CERN, 03/03/2020

Heavy quarks in heavy-ion collisions

Heavy quarks (charm & beauty) are produced `perturbatively' during initial stages of the collision.

• Experience the **full evolution** of the Quark-Gluon Plasma.

$$\tau_{\rm prod} \approx \frac{1}{2m_{\rm q}} \approx 0.1_{\rm q=c} (0.03)_{\rm q=b} \, {\rm fm}/c \quad \ll \quad \tau_{\rm QGP} \approx 0.3 - 1.5 \, {\rm fm}/c \qquad ({\rm at \ the \ LHC})^{[1,2]}$$

• **Interact strongly** with the constituents of the medium.

[1] Eur. Phys. J. C76 no. 3, (2016) 107 [2] Phys. Rev. C89 no. 3, (2014) 034906

Charm-baryon measurements provide unique insights into **hadronisation processes** in the QGP

Pb-Pb: Charm quarks may recombine with constituents of the medium and form charm-baryons at low/intermediate p_{T} .

L. Vermunt | HF hadronisation workshop | 03/03/2020

Charm-baryon measurements provide unique insights into **hadronisation processes** in the QGP

- **Pb-Pb:** Charm quarks may recombine with constituents of the medium and form charm-baryons at low/intermediate p_{T} .
- **Enhancement** of baryon-to-meson (Λ_c^+ / D^0) ratio is predicted in **recombination** (or coalescence) models.
- Further enhancement of baryon-to-meson ratio is expected if light di-quark states exist in the QGP.

What did we learn from p-Pb?

- The Λ⁺_c R_{pPb} has large uncertainties but is **qualitatively described** by **POWHEG+PYTHIA6+EPS09** (CNM effects) and **POWLANG** (QGP formation).
- D-meson R_{pPb} compared to transport models (with "small size" QGP).
 - Trend suggested by the models **not supported** by the data.
 - Data excludes some pure CNM models, see talk P. Antonioli.

Duke: Nucl. Part. Phys. Proc. 276-278 (2016) 225–228 POWLANG: JHEP 03 (2016) 123 POWHEG+PYTHIA6: JHEP 09 (2007) 126 EPS09: JHEP 04 (2009) 065

ALICE publication: $\Lambda_{ m c}^+$ in Pb-Pb at $\sqrt{s_{ m NN}}=$ 5.02 TeV (2015)

If charm quarks recombine with constituents of the medium, we expect:

• Different nuclear modification compared to the charmed meson states $(R_{AA}(\Lambda_{c}^{+})>R_{AA}(\mathbf{D}))$.

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll}^{\rm AA} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}$$

• Enhanced baryon-to-meson ratio compared to pp collisions at low/intermediate p_{T} .

L ^D J _{Pb-Pb} L ^D J _{pp}
--

L. Vermunt | HF hadronisation workshop | 03/03/2020

ALICE publication: $\Lambda_{ m c}^+$ in Pb-Pb at $\sqrt{s_{ m NN}}=$ 5.02 TeV (2015)

Phys. Lett. B793 (2019) 212-223:

- Hint of **hierarchy**: $R_{AA}(D^0) < R_{AA}(D_s^+) < R_{AA}(\Lambda_c^+)$.
- Λ_c^+ / D⁰ in p-Pb and Pb-Pb differ by about **two standard deviations**.
- Measured ratio is reproduced by models implementing a pure coalescence scenario.

Conclusions revisited later with new Pb-Pb 2018 preliminaries.

Open-charm baryon (Λ_c^+) measurements provide unique insights into hadronisation processes in the QGP

Results shown here are based on the **latest Run2 Pb-Pb 2018** at $\sqrt{s_{\text{NN}}} = 5.02$ TeV data taking campaign by **ALICE**, corresponding to $\mathcal{L} \approx 112.3 \ \mu b^{-1}$ (0-10% central) and $\mathcal{L} \approx 49.0 \ \mu b^{-1}$ (30-50% central):

- More differential measurements and improved statistical precision.
- Extended $p_{\rm T}$ range.

Reconstruction of Λ_c^+ baryons in ALICE

Invariant mass analysis of the decay

• $\Lambda_c^+ \rightarrow K_S^0 p \rightarrow \pi^+ \pi^- p$ ($c\tau \approx 60 \ \mu m$, BR $\approx 1.1\%$)

Candidates built **combining triplets of tracks** reconstructed at mid-rapidity ($|\eta| < 0.8$) with proper charge.

Reduction of the combinatorial background by exploiting two different **BDT** algorithms to improve the measurement

- The **TMVA** package \rightarrow AdaBoost
- **Python-based analysis framework** → XGBoost

Topological, kinematical, and PID training variables.

Corrected for

- selection efficiency using MC simulations.
- feed-down subtraction using FONLL predictions.

Average results obtained by weighting the two results by the inverse of the sum in quadrature of the relative uncorrelated systematics uncertainties.

 $\Lambda_{\rm c}^+$ production in Pb-Pb collisions at $\sqrt{s_{
m NN}}=$ 5.02 TeV

Big improvement with respect to measurement in Pb-Pb '15:

- From one p_T bin (6-12 GeV/c) to five bins in 2 and 24 GeV/c.
- From one big centrality interval (0-80%) to 0-10% and 30-50%.

 $\Lambda_{
m c}^+$ nuclear modification factor ($R_{
m AA}$) at $\sqrt{s_{
m NN}}=$ 5.02 TeV

- **Suppression observed** for the Λ_c^+ baryon in Pb-Pb collisions.
- Despite the compatibility within uncertainties, hint of larger suppression for central collisions by a factor ~1.5 up to $p_{\rm T} = 12$ GeV/c.

$\Lambda_{ m c}^+$ nuclear modification factor ($R_{ m AA}$) at $\sqrt{s_{ m NN}}=$ 5.02 TeV

- Suppression observed for the Λ_c^+ baryon in Pb-Pb collisions.
- Despite the compatibility within uncertainties, hint of larger suppression for central collisions by a factor ~1.5 up to $p_{\rm T} = 12$ GeV/c.
- Comparison to theory favours a scenario where both fragmentation and recombination are present in Pb-Pb and pp collisions.

See talk of S. Plumari for more info.

[1] Catania: Eur. Phys. J. C (2018) 78: 348

L. Vermunt | HF hadronisation workshop | 03/03/2020

ALICE's charm-family portrait of LHC Run-II

- Suppression observed for the Λ_c^+ baryon in Pb-Pb collisions.
- Despite the compatibility within uncertainties, hint of larger suppression for central collisions by a factor ~1.5 up to $p_{\rm T} = 12$ GeV/c.
- Comparison to theory favours a scenario where both fragmentation and recombination are present in Pb-Pb and pp collisions.
- Nuclear suppression hierarchy: $R_{AA}(\Lambda_c^+) \sim R_{AA}(D_s^+) > R_{AA}(D) > R_{AA}(h^{\pm})$.

Baryon-to-meson ratio ($\Lambda_{ m c}^+$ / ${ m D}^0$) at $\sqrt{s_{ m NN}}=$ 5.02 TeV

ALI-PREL-321690

• Central collisions (0-10%) show a hint of a larger ratio than semi-central collisions (30-50%) at intermediate p_{T} .

Baryon-to-meson ratio ($\Lambda_{ m c}^+$ / ${ m D}^0$) at $\sqrt{s_{ m NN}}=$ 5.02 TeV

- Central collisions (0-10%) show a hint of a larger ratio than semi-central collisions (30-50%) at intermediate p_{T} .
- Λ⁺_c / D⁰ ratio described by statistical hadronisation model and the Catania model including fragmentation and recombination.
- A pure coalescence model is clearly overshooting the data.

See talks of S. Plumari, A. Andronic, and P. Skands for more info.

[1] Catania: Eur. Phys. J. C (2018) 78: 348
[2] SHM: Phys Lett B797 (2019) 134836
[3] PYTHIA8 CR: JHEP 08 (2015) 003

L. Vermunt | HF hadronisation workshop | 03/03/2020

To "complete" the theoretical picture

- Recent predictions of Min He and Ralf Rapp compared to the ALICE and STAR measurements in AA collisions.
 - Including three new development in their non-perturbative hydro-Langevin-RRM framework (see [1] or talk of M. He for more info).
 - The Λ_c^+ / D⁰ ratio tends to be slightly overpredicted, where the suppression hierarchy observed in R_{AA} is fairly well reproduced.

[1] PRL 124 042301 (2020)

L. Vermunt | HF hadronisation workshop | 03/03/2020

 Λ_c^+ / D⁰ and Λ_c^+ R_{AA} compared to Pb-Pb 2015 publication

Phys. Lett. B793 (2019) 212-223 improved physics message:

- Hint of **hierarchy**: $R_{AA}(D^0) < R_{AA}(D_s^+) \sim R_{AA}(\Lambda_c^+)$.
- Λ_c^+ / D⁰ in p-Pb and Pb-Pb ...
 - are compatible within statistical uncertainties.
- Measured ratio is reproduced by models implementing ...
 - a frag+coal scenario, a Langevin-RRM approach, and the SHM.

Baryon-to-meson ratio (Λ_c^+ / D^0) compared to pp collisions

- Hint of higher Λ⁺_c / D⁰ ratio in Pb-Pb (0-10% and 30-50%) collisions w.r.t. pp collisions.
 - Understanding of pp data is fundamental. Ratio is underestimated by models with fragmentation parameters derived from e⁺e⁻ collision data.
- Λ_c^+ / D^0 shows an enhancement from low to high multiplicity in pp 13 TeV collisions.
- See talk of P. Antonioli for more info.

Λ_c^+ / D^0 versus multiplicity across the colliding systems

Smooth increase from pp to p-Pb to Pb-Pb multiplicities

- High pp multiplicity ~ Pb-Pb
- Low pp multiplicity > e⁺e⁻

In **qualitative agreement** with the hypothesis of **recombination** that **saturates already in pp?**

Summary and outlook

<u>Pb-Pb</u>: Λ_c^+ / D⁰ and Λ_c^+ R_{AA} are measured in the range 2 $\leq p_T \leq$ 24 GeV/*c* for the 0-10% and 30-50% centrality classes in Pb-Pb collisions.

- Big improvement with respect to Pb-Pb 2015 analysis: physics message of comparison to theory updated!
- Compatible with p-Pb within statistical uncertainties.
- Results in agreement with models that foresee both fragmentation and recombination.

ALICE upgrade for Run3+4 will offer the opportunity to explore, with higher precision, open charmed baryon measurements in a wider p_T region (including new physics channels, e.g. Λ_b^+).

- **New ITS**: 7 layer pixel detector, pointing resolution $\sim 20 \ \mu m$ at $p_T = 1 \ \text{GeV}/c$.
- **New TPC**: using GEM and continuous readout at 50 kHz.

Additional slides

A dedicated heavy-ion experiment

A dedicated heavy-ion experiment

Inner tracking system (ITS)

- Tracking, vertexing, and PID (dE/dx).
- $|\eta| < 0.9$

A dedicated heavy-ion experiment

Inner tracking system (ITS)

- Tracking, vertexing, and PID (dE/dx).
- $|\eta| < 0.9$

Time Projection Chamber (TPC)

- Tracking and PID (dE/dx).
- $|\eta| < 0.9$

A dedicated heavy-ion experiment

Inner tracking system (ITS)

- Tracking, vertexing, and PID (dE/dx).
- $|\eta| < 0.9$

Time Projection Chamber (TPC)

- Tracking and PID (dE/dx).
- $|\eta| < 0.9$

<u>Time-of-Flight (TOF)</u>

- PID (time-of-flight).
- $|\eta| < 0.9$

A dedicated heavy-ion experiment

Inner tracking system (ITS)

- Tracking, vertexing, and PID (dE/dx).
- $|\eta| < 0.9$

Time Projection Chamber (TPC)

- Tracking and PID (dE/dx).
- $|\eta| < 0.9$

Time-of-Flight (TOF)

- PID (time-of-flight).
- $|\eta| < 0.9$

<u>V0</u>

• Trigger, centrality, and event-plane estimation.

 $\Lambda_{\rm c}^+$ / D⁰ and $\Lambda_{\rm c}^+$ $R_{\rm AA}$ compared to Pb-Pb 2015 publication

- Λ_c^+ / D⁰: ~1.9 σ (0-10%) and ~2.8 σ (30-50%) difference between 2015 and 2018.
- *R*_{AA}: ~1.2σ (0-10%) and ~0.6σ (30-50%) difference between 2015 and 2018.

NB1: For sigma calculation 2018 p_T bins merged to 6-12 GeV/c. *NB2:* 2015 analysed in a different centrality range.

Λ_c^+ / D^0 in pp collisions

Preliminary at **5 TeV** compatible with published measurement at **7 TeV**.

 Higher than previous measurements in ee and ep collisions at lower centreof-mass energies (~0.12).

Theory predictions (from JHEP 04 (2018) 108) underpredict the measurement:

- Event generators PYTHIA8, DIPSY, and HERWIG7 significantly too low.
- **PYTHIA8** with enhanced colour reconnection Mode0 increases the ratio and catches the $p_{\rm T}$ trend.
- <u>New:</u> **PYTHIA8** Mode0 using SoftQCD doing an even better job.

New: Prediction from M. He & R. Rapp:

- Statistical hadronisation model, taking into account an increased set of charm-baryon states.
- Moving from 0.22 (std PDG) to 0.57, becoming compatible with ALICE data.

[1] PYTHIA8: Eur. Phys. J. C (2014) 74:3024
[2] DIPSY: JHEP 08 (2011) 103
[3] HERWIG7: Eur. Phys. J. C58 (2008) 639-707
[4] PYTHIA8 CR: JHEP 08 (2015) 003
[5] He & Rapp: 1902.08889

Λ_c^+ / D^0 in pp collisions versus multiplicity

Largely underestimated when comparing to the default PYTHIA8 tune (Monash).

Good agreement when colour-reconnection processes are included between partons created in different MPI's (Mode2).

• Alternative description, doesn't require a QGP-like medium in pp.

Baryon-to-meson ratio (Λ_c^+ / D^0) in ee and ep collisions

	$\Lambda_{\rm c}^+/{\rm D}^0\pm { m stat.}\pm { m syst.}$	System	\sqrt{s} (GeV)	Notes
CLEO [43]	$0.119 \pm 0.021 \pm 0.019$	ee	10.55	
ARGUS [42,98]	0.127 ± 0.031	ee	10.55	
LEP average [80]	$0.113 \pm 0.013 \pm 0.006$	ee	91.2	
ZEUS DIS [51]	$0.124 \pm 0.034^{+0.025}_{-0.022}$	ер	320	$1 < Q^2 < 1000 \text{ GeV}^2,$ $0 < p_{\text{T}} < 10 \text{ GeV}/c, 0.02 < y < 0.7$
ZEUS γp, HERA I [49]	$0.220 \pm 0.035^{+0.027}_{-0.037}$	ep	320	$130 < W < 300 \text{ GeV}, Q^2 < 1 \text{ GeV}^2,$ $p_{\text{T}} > 3.8 \text{ GeV/}c, \eta < 1.6$
ZEUS γp, HERA II [50]	$0.107 \pm 0.018 ^{+0.009}_{-0.014}$	ep	320	$130 < W < 300 \text{ GeV}, Q^2 < 1 \text{ GeV}^2,$ $p_{\text{T}} > 3.8 \text{ GeV/}c, \eta < 1.6$