Measurement of the relative B_c^{\pm}/B^{\pm} production cross section at ATLAS

Konstantin Toms on behalf of the ATLAS Collaboration

University of New Mexico

HFH2020, CERN, 3 March 2020

K. Toms

Relative B_c^{\pm}/B^{\pm} production cross section

The ATLAS Detector @ LHC

- Subsystems essential for B-physics: Inner Detector and Muon Spectrometer.
- Inner Detector: tracking, momentum and vertexing, $|\eta|$ <2.5, d^0 resolution ~10 μ m.
- Muon Spectrometer: trigger ($|\eta|$ <2.4) and muon identification ($|\eta|$ <2.7).
- J/ψ mass resolution: ~60 MeV, $\Upsilon(1S)$: ~119 MeV (resolutions depend on η).

- 20.3 fb⁻¹ of 8 TeV pp collision data.
- Submitted to Phys. Rev. D.
- https://arxiv.org/abs/1912.02672
- Motivation:
 - Test of QCD predictions.
 - Important input for heavy quark production models.
 - Performed differentially in $p_{\rm T}$ and y in the central rapidity region.
 - Complements CMS and LHCb measurements.

- $B_c^{\pm} \rightarrow J/\psi(\mu^+\mu^-)\pi^{\pm}$
- $B^{\pm} \rightarrow J/\psi(\mu^+\mu^-)K^{\pm}$
- Dimuon trigger, $p_{\rm T}(\mu_1, \mu_2) > 4$ GeV, 2.5 < m $(\mu\mu)$ < 4.3 GeV.
- J/ψ candidates are formed from oppositely charged muons, $p_{\rm T}(\mu) > 4$ GeV, $|\eta| < 2.3$, 2.6 $< m(J/\psi) < 3.5$ GeV. Three invariant mass windows, defined by the ATLAS detector resolution.
- Hadronic tracks: $p_{\rm T} > 2$ GeV.
- *B* candidates are formed from the 3 tracks: two muonic and one hadronic.
- The $\chi^2(B \text{ vertex})/\text{NDoF} < 1.8$.
- Instead of a cut on B lifetime, a cut on d_{xy}^0 hadron impact parameter significance is introduced, $d_{xy}^0/\sigma(d_{xy}^0) > 1.2$.
- Selections are optimised with MC signal and background data sideband studies.

Analysis overview (2/4)

- Extended unbinned maximum likelihood fits to the *B* meson invariant mass distributions yield \sim 400k events for the B^{\pm} and \sim 800 events for the B_c^{\pm} .
- 1600 Events / 50 MeV 10 MeV 40000 ATLAS \s = 8 TeV, 20.3 fb 1400 ATLAS = 8 TeV, 20.3 fb 35000 1200 mpt = 5278.6 ± 0.1 MeV 30000 Events / $N_{n\pm}^{\omega} = (398.3 \pm 0.8) \times 10$ 1000 Data 37.5 ± 0.1 MeV 25000 p_(B[±]) > 13 GeV Total fit 800F $|V(B^{\pm})| < 2.3$ Signal = 6281.0 ± 4.5 MeV 20000 Comb. bka = 798⁺⁹² = 52.4 ± 5.6 MeV 600È ----- B→J/ψX Data 15000 400 - p_(B[±]) > 13 GeV B[±]→J/ψπ[±] Total fit 10000 |v(B[±])| < 2.3 Signal 200 5000 Background 0 5800 6000 6200 6400 6600 6800 5200 5400 5500 5100 $m_{J/\psi \pi^{\pm}}$ [MeV] $m_{J/\psi K^{\pm}}$ [MeV] (Data - fit) / err. Data - fit)/err. 5800 6000 6200 6400 6600 6800 5200 5300 5100 5400 5500 $m_{J/\psi \pi^{\pm}}$ [MeV] m_{J/w K[±]} [MeV]
- $p_{\rm T}(B) > 13$ GeV, |y| < 2.3.

5 / 17

Analysis overview (3/4)

6 / 17

- In addition to the full bin we define two bins in $p_{\rm T}$: [13—22 GeV] and [>22 GeV] and two bins in rapidity: |y|<0.75 and 0.75<|y|<2.3.
- Bin sizes are selected to equalize the B_c^{\pm} yields.
- Example: fits for two bins in $p_{\rm T}$ for the B_c^{\pm} .

• The relative cross section times branching fraction is given by:

$$\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psiK^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} = \frac{N^{\mathsf{reco}}(B_c^{\pm})}{N^{\mathsf{reco}}(B^{\pm})} \cdot \frac{\epsilon(B^{\pm})}{\epsilon(B_c^{\pm})}$$

- $N^{reco}(B)$ are obtained from the fits. Overall analysis efficiencies $\epsilon(B_c^{\pm})$ and $\epsilon(B^{\pm})$ are obtained from the MC.
- MC is corrected in several ways:
 - sPlot reweighting of the $p_{\rm T}(B)$ and y(B) distributions;
 - trigger acceptance;
 - distributions of variables used for minimal selections.

Results (1/2)

The measurement of the relative cross section times branching fraction is performed in five bins:

Analysis bin	$\sigma(B_c^{\pm})/\sigma(B^{\pm}) imes \mathcal{B}(B_c^{\pm} o J/\psi\pi^{\pm})/\mathcal{B}(B^{\pm} o J/\psiK^{\pm})$
$ p_{ m T}(B) > 13$, $ y(B) < 2.3$	$(0.34 \pm 0.04_{\sf stat} \pm 0.02_{\sf syst} \pm 0.01_{\sf lifetime})\%$
$13 < p_{ m T}(B) < 22$, $ y(B) < 2.3$	$(0.44 \pm 0.07_{stat} \pm 0.04_{syst} \pm 0.01_{lifetime})\%$
$p_{ m T}(B)>22$, $ y(B) <2.3$	$(0.24 \pm 0.04_{stat} \pm 0.01_{syst} \pm 0.01_{lifetime})\%$
$p_{ m T}(B) > 13$, $ y(B) < 0.75$	$(0.38 \pm 0.06_{stat} \pm 0.04_{syst} \pm 0.01_{lifetime})\%$
$ p_{ m T}(B)>13$, $0.75< y(B) <2.3$	$(0.29\pm0.05_{\sf stat}\pm0.02_{\sf syst}\pm0.01_{\sf lifetime})\%$

K. Toms

- The measurement precision is limited by the statistical uncertainty on the number of B_c^{\pm} candidates.
- The following systematic uncertainties are considered:
 - fitting procedure (including Cabibbo-suppressed decays contribution);
 - trigger, reconstruction and tracking effects;
 - B_c^{\pm} lifetime uncertainty;
 - MC-related uncertainties (sample size, minimal selection criteria).
- The measurement suggest a dependence on the $p_{\rm T}$: the production cross section of the B_c^{\pm} meson decreases faster with $p_{\rm T}$ than the production cross section of the B meson. No significant dependence on rapidity has been observed.

- The production mechanism of the B_c^{\pm} differs from the one of the B^{\pm} : in the latter case heavy *b*-quark catches light *u*-quark from the sea.
- For the B_c^{\pm} case a collinear production of two distinct heavy quarks is required.
- The complete perturbative calculation for $gg \rightarrow B^+ b\bar{c}$ was performed by several authors (e.g. hep-ph/9408242, hen-ph/9408284, hep-ph/94042346), with results in some disagreement with each other.
- Results depend on different choices of the gluon distribution functions and on the scale of the α_s .

- Naively, the higher the $p_{\rm T}$ the higher the chance for the $c\bar{c}$ -pair to be created.
- The data show the opposite behaviour, and this is also consistent in fact with what seen for the B_s^0/B^{\pm} ratio.
- Michelangelo Mangano in private discussion suggests the following two possible explanations:
 - at low p_T, the B[±]_c is mostly formed by the *b*-quark finding nearby a c̄, created independently as part of the hard process (gg → bbcc). When p_T becomes larger, it is more rare to find the *b* and c̄ close enough in phase-space so that they bind together;
 - at low $p_{\rm T}$, the $c\bar{c}$ comes mostly from the first and only gluon emission of the produced *b*-quark: $b \to b + g[\to \bar{c}]$. The $b \bar{c}$ pair is automatically in a color-singlet state and if they are close enough in phase space they bind. When we go to higher $p_{\rm T}$, there is enough acceleration for more gluons being radiated, e.g. there could be a second gluon radiated after the primary $g \to \bar{c}$ splitting, and therefore the $b + \bar{c}$ system is not in a color singlet state. It is a bit like a Sudakov suppression effect, the larger the $p_{\rm T}$, the less likely it is to have the *b* and \bar{c} nearby.

- ATLAS has studied the B_c^{\pm}/B^{\pm} production cross section at 8 TeV.
- Differential $(p_{\rm T}, y)$ study in the central rapidity region.
- $\bullet\,$ The measurement suggests some $p_{\rm T}$ dependence.

Backup (1/5)

- B-physics starts with single or di-muon triggers with various thresholds:
 - *p*_T(μ) > 6 GeV
 - $p_{\rm T}(\mu) > 18 \; {
 m GeV}$
 - $p_{\mathrm{T}}(\mu_1) > 4$ GeV and $p_{\mathrm{T}}(\mu_2) > 4$ GeV
 - $p_{\mathrm{T}}(\mu_1) > 6$ GeV and $p_{\mathrm{T}}(\mu_2) > 4$ GeV
 - $p_{\mathrm{T}}(\mu_1) > 6$ GeV and $p_{\mathrm{T}}(\mu_2) > 6$ GeV

Di-muon mass range:

m($\mu\mu$) \in [2.5; 4.3] GeV for final states containing J/ψ ;

m($\mu\mu$) \in [4.0; 8.5] GeV for $B \rightarrow \mu$ transitions.

Table 1: Summary of corrections due to the minimal selection criteria in the MC simulation. The first uncertainty is statistical, the second one is systematic.

Analysis bin	Correction to the B_c^\pm	Correction to the B^\pm	
$ p_{ m T}(B)>13$, $ y(B) <2.3$	$0.0969 \pm 0.0004 \pm 0.0024$	$0.0929 \pm 0.0004 \pm 0.0022$	
$13 < p_{ m T}(B) < 22$, $ y(B) < 2.3$	$0.0829 \pm 0.0004 \pm 0.0031$	$0.0826 \pm 0.0004 \pm 0.0029$	
$p_{ m T}(B)>22$, $ y(B) <2.3$	$0.2164 \pm 0.0014 \pm 0.0018$	$0.2213 \pm 0.0013 \pm 0.0017$	
$p_{ m T}(B) > 13$, $ y(B) < 0.75$	$0.0984 \pm 0.0007 \pm 0.0033$	$0.0996 \pm 0.0007 \pm 0.0035$	
$p_{ m T}(B)>13$, $0.75< y(B) <2.3$	$0.0952 \pm 0.0005 \pm 0.0014$	$0.0859 \pm 0.0005 \pm 0.0016$	

The efficiency of the analysis selection criteria, $\epsilon^{\text{selection}}$, derived from MC simulation, is incorporated into the final efficiency ratios. The efficiency ratios $\epsilon(B^{\pm})/\epsilon(B_c^{\pm})$, excluding the Minimal Selection Criteria corrections, are found to be:

- 2.19 ± 0.05 for $13 \, <
 ho_{
 m T} < 22$,
- 1.22 ± 0.03 for $p_{\mathrm{T}}>22$,
- 1.75 ± 0.03 for $p_{
 m T}>13$,
- 1.74 ± 0.05 for |y| < 0.75,
- 1.76 ± 0.04 for 0.75 < |y| < 2.3.

Table 2: Summary of the absolute values of systematic uncertainties for the analysis efficiency ratios.

Source of uncertainty	Absolute value of the uncertainty in the efficiency ratio				
	$p_{\rm T} > 13$	$13 < p_{\mathrm{T}} < 22$	$p_{\mathrm{T}} > 22$	y < 0.75	0.75 < y < 2.3
Size of the MC samples	0.03	0.05	0.03	0.05	0.04
and the event counting					
sPlot-based MC reweight-	0.04	0.03	0.03	0.05	0.06
ing procedure					
Minimal selection criteria	0.04	0.09	0.02	0.06	0.03
Tracking uncertainty	0.01	0.01	0.01	0.01	0.01

Table 3: Summary of all systematic uncertainties for the number of signal events in the combined bin ($p_{\rm T}>$ 13, |y|< 2.3).

Source of uncertainty	Uncertainty value	
	B_c^{\pm}	B^{\pm}
Signal model of the fit	2.4%	0.1%
Cabibbo-suppressed decay modeling	2.4%	0.5%
Background model of the fit	2.9%	0.1%
Trigger effects and reconstruction effects	0.9%	0.9%
B-meson lifetime uncertainty	0.7%	< 0.1%