Measurement of the relative B_c^\pm/B^\pm production cross section at ATLAS

Konstantin Toms on behalf of the ATLAS Collaboration

University of New Mexico

ATLAS EXPERIMENT

THE UNIVERSITY OF NEW MEXICO

HFH2020, CERN, 3 March 2020
Subsystems essential for B-physics: Inner Detector and Muon Spectrometer.

- Inner Detector: tracking, momentum and vertexing, $|\eta|<2.5$, d^0 resolution $\sim10\ \mu m$.
- Muon Spectrometer: trigger ($|\eta|<2.4$) and muon identification ($|\eta|<2.7$).
- J/ψ mass resolution: $\sim60\ \text{MeV}$, $\Upsilon(1S)$: $\sim119\ \text{MeV}$ (resolutions depend on η).
Relative B_c/B^{\pm} production cross section

- 20.3 fb$^{-1}$ of 8 TeV pp collision data.
- Submitted to Phys. Rev. D.
- Motivation:
 - Test of QCD predictions.
 - Important input for heavy quark production models.
 - Performed differentially in p_T and y in the central rapidity region.
 - Complements CMS and LHCb measurements.
Analysis overview (1/4)

- $B_c^\pm \rightarrow J/\psi (\mu^+ \mu^-) \pi^\pm$
- $B^\pm \rightarrow J/\psi (\mu^+ \mu^-) K^\pm$
- Dimuon trigger, $p_T(\mu_1, \mu_2) > 4$ GeV, $2.5 < m(\mu\mu) < 4.3$ GeV.
- J/ψ candidates are formed from oppositely charged muons, $p_T(\mu) > 4$ GeV, $|\eta| < 2.3$, $2.6 < m(J/\psi) < 3.5$ GeV. Three invariant mass windows, defined by the ATLAS detector resolution.
- Hadronic tracks: $p_T > 2$ GeV.
- B candidates are formed from the 3 tracks: two muonic and one hadronic.
- The $\chi^2(B$ vertex)/NDoF < 1.8.
- Instead of a cut on B lifetime, a cut on d_{xy}^0 hadron impact parameter significance is introduced, $d_{xy}^0/\sigma(d_{xy}^0) > 1.2$.
- Selections are optimised with MC signal and background data sideband studies.
Extended unbinned maximum likelihood fits to the B meson invariant mass distributions yield $\sim 400k$ events for the B^{\pm} and ~ 800 events for the B^{\pm}_{c}.

$p_T(B) > 13$ GeV, $|y| < 2.3$.

Relative B^{\pm}_{c}/B^{\pm} production cross section
In addition to the full bin we define two bins in p_T: [13—22 GeV] and [>22 GeV] and two bins in rapidity: $|y|<0.75$ and $0.75<|y|<2.3$.

Bin sizes are selected to equalize the B^\pm_c yields.

Example: fits for two bins in p_T for the B^\pm_c.

![Graphs showing fits for two bins in p_T for the B^\pm_c.]
The relative cross section times branching fraction is given by:

\[
\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \rightarrow J/\psi\pi^{\pm}) \cdot \mathcal{B}(J/\psi \rightarrow \mu^+\mu^-)}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \rightarrow J/\psi K^{\pm}) \cdot \mathcal{B}(J/\psi \rightarrow \mu^+\mu^-)} = \frac{N^{\text{reco}}(B_c^{\pm})}{N^{\text{reco}}(B^{\pm})} \cdot \frac{\epsilon(B^{\pm})}{\epsilon(B_c^{\pm})}
\]

\(N^{\text{reco}}(B)\) are obtained from the fits. Overall analysis efficiencies \(\epsilon(B_c^{\pm})\) and \(\epsilon(B^{\pm})\) are obtained from the MC.

MC is corrected in several ways:

- sPlot reweighting of the \(p_T(B)\) and \(y(B)\) distributions;
- trigger acceptance;
- distributions of variables used for minimal selections.
The measurement of the relative cross section times branching fraction is performed in five bins:

<table>
<thead>
<tr>
<th>Analysis bin</th>
<th>$\sigma(B_c^\pm)/\sigma(B^\pm) \times \mathcal{B}(B_c^\pm \rightarrow J/\psi\pi^\pm)/\mathcal{B}(B^\pm \rightarrow J/\psi K^\pm)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T(B) > 13$, $</td>
<td>y(B)</td>
</tr>
<tr>
<td>$13 < p_T(B) < 22$, $</td>
<td>y(B)</td>
</tr>
<tr>
<td>$p_T(B) > 22$, $</td>
<td>y(B)</td>
</tr>
<tr>
<td>$p_T(B) > 13$, $0.75 <</td>
<td>y(B)</td>
</tr>
<tr>
<td>$p_T(B) > 13$, $0.75 <</td>
<td>y(B)</td>
</tr>
</tbody>
</table>
The measurement precision is limited by the statistical uncertainty on the number of B_c^{\pm} candidates.

The following systematic uncertainties are considered:

- fitting procedure (including Cabibbo-suppressed decays contribution);
- trigger, reconstruction and tracking effects;
- B_c^{\pm} lifetime uncertainty;
- MC-related uncertainties (sample size, minimal selection criteria).

The measurement suggest a dependence on the p_T: the production cross section of the B_c^{\pm} meson decreases faster with p_T than the production cross section of the B meson. No significant dependence on rapidity has been observed.
The production mechanism of the B_c^{\pm} differs from the one of the B^{\pm}: in the latter case heavy b-quark catches light u-quark from the sea.

For the B_c^{\pm} case a collinear production of two distinct heavy quarks is required.

The complete perturbative calculation for $gg \to B^+ b\bar{c}$ was performed by several authors (e.g. hep-ph/9408242, hep-ph/9408284, hep-ph/94042346), with results in some disagreement with each other.

Results depend on different choices of the gluon distribution functions and on the scale of the α_s.
Naively, the higher the p_T the higher the chance for the $c\bar{c}$-pair to be created.

The data show the opposite behaviour, and this is also consistent in fact with what seen for the B_s^0/B^\pm ratio.

Michelangelo Mangano in private discussion suggests the following two possible explanations:

- at low p_T, the B_c^\pm is mostly formed by the b-quark finding nearby a \bar{c}, created independently as part of the hard process ($gg \rightarrow bbcc$). When p_T becomes larger, it is more rare to find the b and \bar{c} close enough in phase-space so that they bind together;
- at low p_T, the $c\bar{c}$ comes mostly from the first and only gluon emission of the produced b-quark: $b \rightarrow b + g [\rightarrow \bar{c}]$. The $b - \bar{c}$ pair is automatically in a color-singlet state and if they are close enough in phase space they bind. When we go to higher p_T, there is enough acceleration for more gluons being radiated, e.g. there could be a second gluon radiated after the primary $g \rightarrow \bar{c}$ splitting, and therefore the $b + \bar{c}$ system is not in a color singlet state. It is a bit like a Sudakov suppression effect, the larger the p_T, the less likely it is to have the b and \bar{c} nearby.
Conclusions

- ATLAS has studied the B_c^\pm/B^\pm production cross section at 8 TeV.
- Differential (p_T, y) study in the central rapidity region.
- The measurement suggests some p_T dependence.
B-physics starts with single or di-muon triggers with various thresholds:

- $p_T(\mu) > 6$ GeV
- $p_T(\mu) > 18$ GeV
- $p_T(\mu_1) > 4$ GeV and $p_T(\mu_2) > 4$ GeV
- $p_T(\mu_1) > 6$ GeV and $p_T(\mu_2) > 4$ GeV
- $p_T(\mu_1) > 6$ GeV and $p_T(\mu_2) > 6$ GeV

Di-muon mass range:

- $m(\mu\mu) \in [2.5; 4.3]$ GeV for final states containing J/ψ;
- $m(\mu\mu) \in [4.0; 8.5]$ GeV for $B \rightarrow \mu$ transitions.
Table 1: Summary of corrections due to the minimal selection criteria in the MC simulation. The first uncertainty is statistical, the second one is systematic.

<table>
<thead>
<tr>
<th>Analysis bin</th>
<th>Correction to the B_{c}^{\pm}</th>
<th>Correction to the B^{\pm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T(B) > 13$, $</td>
<td>y(B)</td>
<td>< 2.3$</td>
</tr>
<tr>
<td>$13 < p_T(B) < 22$, $</td>
<td>y(B)</td>
<td>< 2.3$</td>
</tr>
<tr>
<td>$p_T(B) > 22$, $</td>
<td>y(B)</td>
<td>< 2.3$</td>
</tr>
<tr>
<td>$p_T(B) > 13$, $</td>
<td>y(B)</td>
<td>< 0.75$</td>
</tr>
<tr>
<td>$p_T(B) > 13$, $0.75 <</td>
<td>y(B)</td>
<td>< 2.3$</td>
</tr>
</tbody>
</table>
The efficiency of the analysis selection criteria, $\epsilon^{\text{selection}}$, derived from MC simulation, is incorporated into the final efficiency ratios. The efficiency ratios $\epsilon(B^\pm)/\epsilon(B_c^\pm)$, excluding the Minimal Selection Criteria corrections, are found to be:

- 2.19 ± 0.05 for $13 < p_T < 22$,
- 1.22 ± 0.03 for $p_T > 22$,
- 1.75 ± 0.03 for $p_T > 13$,
- 1.74 ± 0.05 for $|y| < 0.75$,
- 1.76 ± 0.04 for $0.75 < |y| < 2.3$.

K. Toms

Relative B_c^\pm/B^\pm production cross section
Table 2: Summary of the absolute values of systematic uncertainties for the analysis efficiency ratios.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Absolute value of the uncertainty in the efficiency ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p_T > 13$</td>
</tr>
<tr>
<td>Size of the MC samples and the event counting</td>
<td>0.03</td>
</tr>
<tr>
<td>sPlot-based MC reweighting procedure</td>
<td>0.04</td>
</tr>
<tr>
<td>Minimal selection criteria</td>
<td>0.04</td>
</tr>
<tr>
<td>Tracking uncertainty</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Table 3: Summary of all systematic uncertainties for the number of signal events in the combined bin ($p_T > 13$, $|y| < 2.3$).

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B_c^\pm</td>
</tr>
<tr>
<td></td>
<td>B^\pm</td>
</tr>
<tr>
<td>Signal model of the fit</td>
<td>2.4%</td>
</tr>
<tr>
<td></td>
<td>0.1%</td>
</tr>
<tr>
<td>Cabibbo-suppressed decay modeling</td>
<td>2.4%</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
</tr>
<tr>
<td>Background model of the fit</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>0.1%</td>
</tr>
<tr>
<td>Trigger effects and reconstruction effects</td>
<td>0.9%</td>
</tr>
<tr>
<td></td>
<td>0.9%</td>
</tr>
<tr>
<td>B-meson lifetime uncertainty</td>
<td>0.7%</td>
</tr>
<tr>
<td></td>
<td>$< 0.1%$</td>
</tr>
</tbody>
</table>