

H.Burkhardt, LHeC meeting 2 March 2010

Requirements for the Injector complex for RR

From accelerator workpackages for the LHeC CDR plan O.B., M.K. of 11/02/2010 :

1.4.) Injector complex design:

- CERN contact: Helmut Burkhardt
- i. Electron and positron source design
- ii. Injector ring design

Conclusion from previous discussions, as presented and documented at DIS 2008 proc. and EPAC 2008 wepp052 and my talk at Divonne 2008 :

- LEP injectors gone
- SPS should not be used as lepton injector, (impedance)

 \Rightarrow

LHeC RR needs a new injector - but the requirements are rather modest, and existing designs (example ELFE) can be (down)-scaled to meet these

Request for input and help : principle ok from Louis Rinolfi further help and RR, LR collaboration on injectors would be very useful !

baseline: unpolarized electronspossible upgrade or stage 2 :unpolarized positrons

very modest bunch intensity(see interactive parameter list here)LEP2 4.2×10^{11} LHeC RR 1.4×10^{10} 30 times less than in LEP, 2.24 nCto have some margin, aim for $2 \times 10^{10} = 3.2$ nC from the injectorsallow to fill the 2808 bunches in the ring, 70 mA circulating in LHeC ringfilling < 10 min (5 bunches / sec, 16 nA)</td>

LHeC RR :

polarization would not come from injectors, but from natural transverse polarization of the particles stored in the ring

LEP had in the beginning 20 GeV and later 22 GeV injection energy reason : TMCI limit (main large ring limitation - Panofsky-Wenzel)

 $I_{th} = \frac{\omega_s E}{e \sum \beta \ k_{\perp}(\sigma_s)} \quad \text{with} \quad \begin{aligned} \omega_s &= 2\pi \ Q_s \ f_{rev} \\ k_{\perp} &= 5.5 \ kV \ / \ pCm \ (\text{for } \sigma_z = 1 \text{cm}, \ 20\% \text{ higher at 5mm}) \\ \Sigma \beta_y \ k_{\perp} &= 40 \ \text{m} \ 10^{15} \ \text{V/Asm} \\ E &= 22 \ \text{GeV} \ Q_s &= 0.12 \\ I_{th} &= 850 \ \mu\text{A} \quad \text{predicted limit at} \quad \mathbf{N}_e = 4.7 \times 10^{11} \end{aligned}$

Ref.: A. Hofmann, B. Zotter Cham. 94, Cham 97,

LEP impedance, measured with coh. tune shift method, see SL-MD-Note-231, H.Burkhardt et al., 1997 rather broad band 2 GHz, mostly from cavities (+ a bit from bellows), rather x/y symmetric

For LHeC we only require $N_e = 2 \times 10^{10}$

at similar impedance (less from cavities, more from smaller pipe)

at slightly lower Qs :

Not likely to come close to the TMCI limit.

Could therefore inject at much reduced beam energy compared to LEP

However few GeV probably not practical for magnet stability; would also required strong damping wiggler.

For a first round of estimates : let us assume an injection energy of $E_{inj} = 10 \text{ GeV}$

Basically : e-, injection energy 10 GeV, with very modest intensity requirements

LHeC ring uses SC cavities.

Natural choice would be to use the same technology for the injectors.

LHeC ring, 70 GeV requires ~1 GV rf to compensate for the 0.7 GeV energy loss in Syn.Rad.

Could in principal use a straight 10 GeV linac as injector at 20MV / m gradient this would be 500 m long

Reduce cost by recirculation - at few GeV these can be rather compact

10 GeV injector inspired by ELFE@CERN

Table 1: ELFE performance parameters.

Top energy	25 GeV
Beam current on target	$100 \ \mu A$
Beam power on target	2.5 MW
Injection energy	0.8 GeV
Number of passes	7
Energy gain per pass	3.5 GeV
Relative r.m.s. momentum spread at top energy	$\leq 10^{-3}$
Emittance at top energy	$\leq 30~{ m nm}$
Bunch repetition time on target	2.8 ns

Table 2: Estimated capital expenditure for the construction of ELFE at CERN.

System	MCHF	MCHF	MCHF
Injection	20.400		
RF system	10.868		
Cryogenics	63.000		
Magnets	55.209		
Vacuum	19.410		
Beam diagnostics	9.400		
Power converters	11.165		
Control system	10.000		
Accelerator components		199.452	
Electrical power distribution	29.031		
Civil engineering	109.700		
Experimental hall(s)	31.200		
Cooling, ventilation, etc.	25.773		
Access control, etc.	2.050		
Conventional construction		197.414	
Total			397.206

ELFE@CERN design, to some extend based on CEBAF $f_{rf} = 352$ MHz, gradient 8 MV/m $V_{rf} = 3.5$ GV, 72 rf-modules 7 passes (last at 21.5 GeV) L = 3924 m of which Linac 1081 m

e = 56.9 m

LHeC injector

f_{rf} ~ 1 GHz, gradient 20 MV/m Linac L = 150 m 7× shorter V_{rf} = 3 GV, 3 passes ; last 7-10 GeV energy loss scaling E⁴ allows for much shorter bends 7 GeV, $\varrho = 2$ m gives 1% energy loss and 10⁻³ energy spread

gaining a lot with just 2 re-circulation, 3 passages through the LINAC

Where to inject ?

Injection where ? Several possibilities. Bypass ?

